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Abstract

The ability to combine concepts to model the
world in intricate ways underlies most of the higher
cognitive competences like thought and language.
It has motivated the stance that cognition is purely
syntax-driven computation on systems of amodal
symbols - a view widely referred to as the Classical
Computational Theory of Mind (CCTM).

Grounded Cognition (GC) rejects this view
and emphasizes the importance of being able to
ground concepts in perception, i.e., to establish a
connection between concepts and objects in the
perceptual input.

This master thesis is part of a research program
to provide a neural processing account for GC based
on neural principles formalized in Dynamic Field
Theory (DFT). It introduces a neural architecture
for the grounding of combinatorial concepts, i.e.,
concepts that are built by combining other concepts.
The architecture receives an arbitrary input image
or video and an arbitrary combinatorial concept,
which describes an object in terms of its attributes
and relationships to other objects – e.g., “a red
triangle which is to the right of a red circle that is
below a green diagonal rectangle and above a blue
object”. Its task is to ground the concept in the
perceptual input, i.e., to bring the described object
into the attentional foreground.

The components of a combinatorial concept are
grounded in a sequence of grounding steps, while
the output of each grounding step is passed on
to the next grounding step through self-sustained
neural fields. This way, semantic compositionality
is an emergent property of the neural dynamics
and does not require any form of amodal symbolic
computation.

The capabilities of the architecture are demon-
strated in a set of 6 qualitatively different simu-
lations that vary with the complexity of the com-
binatorial concept and the perceptual input. The
architecture is able to successfully ground the given
combinatorial concept in all test cases.

Another contribution of this thesis is a clear in-
terface between the grounding system and language,
and an embedding in the literature of psychological
theories of concepts.
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The discussion focuses on motivating aspects
of the architecture by theoretical arguments and
empirical evidence, contrasting our approach with
other accounts for the representation, processing
and perceptual grounding of combinatorial concepts,
and addressing how our architecture can account for
the productivity, compositionality and systematic-
ity of thought and language, which so far have been
taken to be the hallmark of CCTM approaches.
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Introduction 1

The abilities to represent, learn, apply and reason with con-
cepts are prolific features of human cognition and underly
most of the higher cognitive functions like thought, belief
and language. It is in terms of concepts that we represent
the world, reason about the world, and communicate about
the world through language. Concepts make up the building
blocks of thoughts and beliefs, and most contemporary the-
ories of semantics take them to be the meanings of words or
phrases. Understanding the neural basis of concepts is thus
essential to understanding the higher cognitive feats and
consequently essential for creating general-purpose artificial
intelligence.

A noticeable feature of human conceptual systems is
the ability to combine concepts, which allows for the con-
struction of a virtually indefinite range of new concepts
out of other concepts to model the world in intricate ways.
For instance, we can combine the concepts red, diago-
nal, and rectangle into the combinatorial concept of a
red diagonal rectangle. Similarly, we can combine
the concepts red, object, above, and green into the
combinatorial concept of a red object above a green
object. It is this cognitive feat that underlies the pro-
duction and understanding of nested linguistic expressions,
thoughts, and beliefs.

The ability to productively combine concepts has moti-
vated the stance that higher cognitive functions like thought,
language understanding and language production are best
understood as computation carried out on abstract systems
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CHAPTER 1. INTRODUCTION

of symbols – a view that is now widely referred to as the
Classical Computational Theory of Mind (CCTM) (Rescorla,Rescorla, M. (2017). The computational the-

ory of mind. In E. N. Zalta (Ed.), The stan-
ford encyclopedia of philosophy (Spring 2017).
Metaphysics Research Lab, Stanford Univer-
sity

2017). In that view, conceptual knowledge resides in sym-
bolic memory systems that are separate from the brain’s
modal systems for perception, action and introspection.
Representations in these modal systems are transduced into
symbolic representations with combinatorial syntactic and
semantic structure, and higher cognition is the result of
purely syntactical processes operating on these represen-
tations. Importantly, these symbolic representations are
believed to be amodal, i.e.,

“(1) they are arbitrarily related to their cor-
responding categories in the world and expe-
rience; and (2) they can stand alone without
grounding to perform the basic computations
underlying conceptual processing” (Barsalou,
2016, p. 1125)

Barsalou, L. W. (2016). On staying grounded
and avoiding quixotic dead ends. Psycho-
nomic Bulletin & Review, 23 (4), 1122–1142

For example, the proposition “all humans are mortal”
could be encoded as the symbol string

∀x(human(x)→ mortal(x)). (1.1)

Similarly, the proposition “Socrates is a human” could be
encoded as the symbol string

human(socrates). (1.2)

The idea behind the CCTM is that the conclusion that
“Socrates is mortal”, which human beings draw with ease, is
the result of a process that makes reference to the syntactic
properties of the symbol strings alone. For instance, such
a process could contain a rule that whenever a statement
with the syntactic form

∀x(A(x)→ B(x)) (1.3)

for arbitrary predicate symbols A and B is encountered in
memory, and another statement with the syntactic form

A(t) (1.4)

for an arbitrary term symbol t is encountered in addition,
then the system should produce the statement

B(t). (1.5)

2



This rule would lead the system to the conclusion

mortal(socrates) (1.6)

from the premises given by Equation 1.1 and Equation 1.2,
which states that “Socrates is mortal”.

Defenders of this view contend that only the CCTM can
account for the ability to productively combine concepts,
the fact that language and concepts feature a compositional
semantics, and the fact that the ability to understand some
concepts is systematically related to the ability to under-
stand certain other concepts (Fodor & Pylyshyn, 1988). Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-

nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28 (1-2), 3–71Consequently, many computational models of language pro-

cessing and conceptual reasoning are given in terms of
algorithmic symbol processing.

In the last few decades, the CCTM has been challenged
by various findings and arguments, e.g., the lack of empiri-
cal evidence for amodal symbols in the brain, overlap in the
brain regions responsible for perception and conceptual rea-
soning, the symbol grounding problem, and inconsistencies
with neural principles of computation (see Section 2.4).

In response, views of Grounded Cognition (GC) reject
that conceptual knowledge is stored and processed in sym-
bolic memory stores. Instead, they propose that higher
cognitive processes rely on neural representations stored
and processed in the same neural systems that are also re-
sponsible for perception and whose representational format
mirrors the perceptual states that produced them. Accord-
ing to this view, conceptual systems pervasively rely on
multimodal simulations and situated action, and adequate
models of conceptual systems cannot abstract away from
these aspects, as the CCTM attempts (see Section 2.5).

Essential to GC is the ability to establish a connection
between concepts and the perceptual array or the world – a
process referred to as grounding (Gorniak & Roy, 2004). As Gorniak, P. & Roy, D. (2004). Grounded se-

mantic composition for visual scenes. Jour-
nal of Artificial Intelligence Research, 21,
429–470

Harnad (1990) has argued, the mere processing of abstract

Harnad, S. (1990). The symbol grounding
problem. Physica D: Nonlinear Phenomena,
42, 335–346

symbols devoid of meaning makes it impossible to actually
attain an understanding of what the symbols are about.
When we draw the conclusion that “Socrates is mortal” from
the premises “all humans are mortal” and “Socrates is a
human”, then we have a sense that we actually understand
this reasoning. The conclusion does not just pop out of
nowhere, as would be the case if it were produced by an
amodal symbol processing algorithm. Proponents of GC

3



CHAPTER 1. INTRODUCTION

propose that this sense of understanding is the result of
being able to ground these statements and their constituents
in perception. When hearing statements like “all humans
are mortal”, we can ground this state of affairs, e.g., by
imagining it visually. Thus, GC emphasizes that at any
point during conceptual processing, the cognitive system
has an ability to attain an understanding of what this
processing is about by grounding the statements, concepts,
and constituents of the concepts in perception.

GC is a verbal theory rather than a concrete model.
This master thesis is part of a research program to pro-
vide a neural processing account for GC. The account is
based on Dynamic Field Theory (DFT), a mathematical
framework for the modeling of cognitive processes that is
rooted in our understanding of neural principles. Previ-
ous work by the DFT research community has, amongst
other things, provided neural architectures for perception,
detection, selection, attention, scene representation, se-
quence generation, process organization, and motor control
(Schöner & Spencer, 2015). Moreover, neural architecturesSchöner, G. & Spencer, J. (2015). Dynamic

thinking: A primer on dynamic field theory.
New York, NY: Oxford University Press have been devised for the grounding of spatial or move-

ment relations between two objects (Lipinski et al., 2012;
Lipinski, J., Schneegans, S., Sandamirskaya,
Y., Spencer, J. P., & Schöner, G. (2012). A
neuro-behavioral model of flexible spatial lan-
guage behaviors. Journal of Experimental
Psychology: Learning, Memory and Cogni-
tion, 38 (6), 1490–1511

Richter, M., Lins, J., Schneegans, S., San-
damirskaya, Y., & Schöner, G. (2014). Au-
tonomous neural dynamics to test hypotheses
in a model of spatial language. In P. Bello,
M. Guarini, M. McShane, & B. Scassellati
(Eds.), Proceedings of the 36th annual meet-
ing of the cognitive science society (pp. 2847–
2852). Austin, TX: Cognitive Science Society

Richter, M., Lins, J., & Schöner, G. (2017).
A neural dynamic model generates descrip-
tions of object-oriented actions. Topics in
Cognitive Science, 9, 35–47

Richter, M. (2018). A neural dynamic model
for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

Richter et al., 2014; Richter et al., 2017; Richter, 2018).
They are able to ground denotational phrases like “a red
object below a blue object” or “a red object that is moving
towards a blue object” – or, equivalently, the combinatorial
concepts that are the meanings of these linguistic expres-
sions, which are provided by the user in the form of an
activation pattern over feature concept nodes and relation
concept nodes. These architectures demonstrate how the
discrete symbolic representations that underlie language
can be linked to continuous perceptual representations close
to the sensorimotor layer. Moreover, they demonstrate how
properties and systematic relations among multiple objects
can be recognized and expressed, which is a fundamental
aspect of human intelligence in general and language in
particular. However, these architectures are limited to a
single relation between two objects specified by a single
attribute value.

The primary goal of this master thesis is to build upon
this work and devise a neural architecture that allows for
the grounding of arbitrarily nested combinatorial concepts,
e.g., “a red triangle which is to the right of a red circle that
is below a green diagonal rectangle and above a blue object”.

4



The architecture receives sensory input from a camera or
an image file, which is used to feed a continuous model
of the environment. Furthermore, it receives a grounding
strategy in the form of a neurally encoded sequence of
parameterized instructions that have to be performed in
order to ground a given combinatorial concept, e.g., “find all
green objects, eliminate all non-diagonal objects, eliminate
all non-rectangles, make a selection decision, find a blue
object, . . . ”. The model then performs this sequence of
instructions in order to ground the concept, i.e., to find
an object in the scene that matches this concept. For the
purpose of illustration, the model is restricted to low-level
perceptual attributes like color, orientation, shape, and to
spatial relations. However, the architecture is modular,
so that it can be extended to arbitrary other perceptual
or conceptual spaces. Thus, the architecture serves as a
blueprint for a generic architecture that is able to ground
arbitrary combinatorial concepts in perception.

In building this grounding system, particular emphasis
is put on the following aspects:

neural principles of computation —All building blocks
of the architecture cohere to established neural prin-
ciples of computation. This involves not only sticking
to computations that can be performed by networks
of neurons instead of introducing algorithmic building
blocks, but also to make sure that the way the neurons
interact is biologically plausible. This distinguishes
the architecture from many other computational mod-
els, which often employ algorithmic techniques that
are impossible to be performed by the neural hardware
of the brain.

autonomy — The architecture unfolds solely based on
the initial sensory input, grounding strategy input,
and its internal dynamics. In particular, it does not
require any external control input by a human user.

emergent discrete events — Discrete events like pro-
cessing steps, detection or selection decisions emerge
from the internal dynamics through dynamic instabil-
ities.

stability — The components of the architecture form sta-
ble representations that are robust to changing sensory

5



CHAPTER 1. INTRODUCTION

input and noise.

coordination of shared resources —Different processes
are coordinated and do not interfere with each other.
At any time, the state of the architecture coheres with
the demands of the currently active processes.

A second goal of this master thesis is to embed the
neural theory of atomic and combinatorial concepts under-
lying our grounding system in the literature of theories of
concepts. It will be argued that the DFT-based accounts
of atomic concepts, which have already been prevalent in
past architectures, are prototype theories of concepts in the
form of a probability distribution in conceptual or percep-
tual spaces. Moreover, it will be argued that the class of
combinatorial concepts that our new architecture is able
to ground are all those concepts that can be described as
a graph consisting of frames and relations between frames.
A frame consists of a set of attribute-value assignments.
Frame graphs are a common concept representation format
that is widely believed to be able to capture a wide range
of human concepts, and that is adopted with slight varia-
tions in both amodal and perceptual theories of knowledge,
as well as natural language semantics (e.g., Minsky, 1977;Minsky, M. (1977). A framework for repre-

senting knowledge. In P. Winston (Ed.), The
psychology of computer vision. New York,
NY: McGraw-Hill

Sowa, J. F. et al. (2000). Knowledge rep-
resentation: Logical, philosophical, and com-
putational foundations. Pacific Grove, CA:
Brooks/Cole

Barsalou, L. W. (1999). Perceptual sym-
bol systems. Behavioral and Brain Sciences,
22 (4), 577–609

Jackendoff, R. (2002). Foundations of lan-
guage: Brain, meaning, grammar, evolution.
Oxford University Press

Sowa et al., 2000; Barsalou, 1999; Jackendoff, 2002).
A third goal is to clearly interface the grounding system

with language. In doing so, I draw upon the Parallel Ar-
chitecture (PA) developed by Jackendoff (2002), according
to which language has multiple parallel sources of com-
binatoriality. Auditory input is analyzed for phonologi-
cal structure, which is analyzed for syntactical structure,
which is analyzed for conceptual structure. According to
our idea, conceptual structure is then transformed into a
sequential grounding strategy by a Grounding Strategy En-
coder (GSEnc). This grounding strategy is in turn executed
by the Grounding Strategy Executor (GSEx), effectively
grounding the original linguistic phrase in perception and
thereby facilitating actual understanding of the linguistic
phrase.

A fourth goal is to demonstrate the capabilities of the
grounding system in a set of simulations. Test cases differ
in the perceptual inputs and to-be-grounded combinatorial
concepts, which have been chosen to demonstrate quali-
tatively different scenarios of varying complexity. In all
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simulations, the architecture is able to successfully ground
the given combinatorial concepts, and the components of
the architecture form stable representations that cohere to
the demands of active processes.

A fifth goal is to motivate some of the design features
of the architecture by theoretical arguments and empirical
evidence.

A sixth goal is to contrast our approach with other
neural or CCTM models of the representation, processing or
grounding of combinatorial concepts. It will be argued that
our architecture exhibits productivity, compositionality,
and systematicity, which so far have been the hallmark
of CCTM approaches. It will be demonstrated that they
emerge from the perceptual grounding process due to the
order in which a sequence of grounding steps is carried out,
and due to the way the activation state representing the
perceptual grounding of one object is carried over to the
grounding of a subsequent object. This deprives proponents
of the CCTM of one of their main arguments and is a step
towards demonstrating that neural processing accounts for
GC can serve as fully functional conceptual systems, which
are able to account for the same range of cognitive capacities
that have previously been argued to lend indirect support
to the CCTM.

All in all, this master thesis brings DFT closer toward
a neural theory of conceptual processing. By extension, it
brings DFT closer toward a neural theory of language un-
derstanding, language production, and ultimately cognition
as a whole.

The remainder of this thesis is structured as follows.
Chapter 2 provides background knowledge that is required
to understand the architecture and to embed it into a
broader research context. It summarizes the CCTM, the
Language of Thought Hypothesis (LOTH), and the main
arguments given in favor of these views, followed by a
review of the challenges to these theories. It goes on to
describe the GC research program, theories of atomic and
combinatorial concepts, and the Parallel Architecture (PA)
of language processing. It then reviews the mathemati-
cal and conceptual foundations of DFT. Chapter 3 intro-
duces the Grounding Strategy Encoder, a brain system
that takes a representation of a combinatorial concept as
input and transforms it into a sequence of parameterized
instructions that have to be performed in order to ground
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that concept. Chapter 4 gives a description and mathe-
matical formalization of the Grounding Strategy Executor,
which takes the grounding strategy as input and performs
it. Chapter 5 gives results and explanations of a range
of experiments conducted with the architecture. These
experiments demonstrate the various concept-grounding
capabilities of the architecture. Chapter 6 features a discus-
sion of the architecture, contrasts it with other accounts for
the representation or perceptual grounding of combinatorial
concepts, and considers the implications of this work for the
debate between the CCTM and GC. Chapter 7 concludes
the thesis.
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Background 2

This chapter provides the background knowledge required
to understand the grounding system for combinatorial con-
cepts, to embed it into its research context, and to pave
the way for the discussion that contrasts our approach with
other approaches to the representation and apprehension
of combinatorial concepts.

Section 2.1 summarizes the Classical Computational
Theory of Mind (CCTM), the view that a brain is nature’s
way of implementing a computer. Section 2.2 describes
the Language of Thought Hypothesis (LOTH), a species of
the CCTM emphasizing the representational, combinatorial
and compositional character of symbols, which has strongly
established itself in computational modeling of conceptual
processing and in linguistics. Section 2.3 reconstructs a
prominent set of arguments given in favor of the CCTM
and LOTH by Fodor and Pylyshyn (1988). Section 2.4 Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-

nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28 (1-2), 3–71reviews a range of empirical findings and arguments that

challenge the CCTM and LOTH. Section 2.5 introduces the
Grounded Cognition (GC) view, which has been put forward
in response to these challenges and highlights the perceptual
nature of the higher cognitive competences. Section 2.6
summarizes influential psychological theories of concepts.
Section 2.7 describes the Parallel Architecture (PA), an
influential theory of the relationship between combinatorial
concepts and language. Section 2.8 describes the grounding
process in some detail. Finally, Section 2.9 reviews Dynamic
Field Theory (DFT), paving the way for the model of the
grounding of combinatorial concepts.
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CHAPTER 2. BACKGROUND

2.1 The Classical Computational
Theory of Mind

As already alluded to in the introduction, a historical
trend in the cognitive sciences has been to understand
the brain as nature’s way of implementing a computer, a
view often termed the Classical Computational Theory of
Mind (CCTM). On that view, sensory input gets trans-
formed into a symbolic representational format, and higher
cognition is the result of purely syntactical operations car-
ried out on these symbolic representations, i.e., mechanistic
operations that only make reference to the physical shape
of the symbols, not to their meanings (Rescorla, 2017).Rescorla, M. (2017). The computational the-

ory of mind. In E. N. Zalta (Ed.), The stan-
ford encyclopedia of philosophy (Spring 2017).
Metaphysics Research Lab, Stanford Univer-
sity

Early roots of this idea can be found in the development
of formal logics as a means for modeling laws of reason.
A formal logic is a formal language consisting of a set of
symbols, rules for combining these symbols into complex
symbol structures, and purely syntactical rules of inference,
i.e., rules that only make reference to the form of the sym-
bols rather than their meaning. Through the application of
these syntactical rules, true conclusions can be derived from
true premises. This way, the syntax “tracks” the semantics:
While the rules of transformation are purely syntactical,
they are defined in such a way that truth is preserved
across syntactical transformations – i.e., that syntactical
operations satisfy semantical coherence.

For example, a syntactical rule could be specified that
allows to derive the string “The sky is blue” from the string
“The sky is blue and the sun is shining” due to the fact that
the former is a constituent of the latter. This tracks the
semantic fact that the proposition denoted by “The sky is
blue” follows from the proposition denoted by “The sky is
blue and the sun is shining”. This inference is valid, and it
can be made without reference to the meaning of either “The
sky is blue” or “The sun is shining”. As such, formal logics
allow to account for reasoning processes without intrinsic
reference to meaning.

Formal logics introduce a liberalism regarding the actual
physical shapes of the symbols, as long as the shapes are
used consistently, and the rules of transformation are set up
in accordance with these shapes. Thus, instead of using the
symbol “and” for conjunction, we could use the symbol “#”,
so long as we formulate the rules of inference in accordance,
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e.g., that the strings “A” and “B” can be derived from the
string “A # B”.

Another milestone in the development of the CCTM was
the formalization of the notion of computation by Turing
(1936) in the form of the Turing machine, a hypothetical Turing, A. M. (1936). On computable num-

bers, with an application to the entschei-
dungsproblem. Proceedings of the London
Mathematical Society, 42 (2), 230–265

device that is able to execute any algorithm and solve
any decidable problem. Importantly, its operations consist
of the transformation of symbols, and these operations
are sensitive to the syntactical structure (and only the
syntactical structure) of those symbols. In combination
with the work on formal logics, this showed that it is possible
to construct an autonomous, syntax-driven machine whose
state transitions satisfy semantical coherence – i.e., a reason-
respecting machine.

McCulloch and Pitts (1943) were among the first to sug- McCulloch, W. S. & Pitts, W. (1943). A logi-
cal calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Bio-
physics, 5 (4), 115–133

gest that the human mind is nature’s way of implementing
something that is similar in important respects to a Turing
machine. The primary motivation for this view is its ability
to account for the mental in naturalistic terms, and for how
reason-respecting behavior can emerge from the interaction
of physical matter. In the course of the 1960s, this stance
was at the heart of the emerging field of cognitive science.
It was widely believed that many of the higher cognitive
functions like reasoning, decision making and problem solv-
ing are computations carried out in a fashion similar to a
Turing machine. Research in mathematical modeling of cog-
nition was thus closely intertwined with the emerging fields
of computer science and artificial intelligence, and models
of cognitive processes were often given in algorithmic terms.

2.2 The Language of Thought
Hypothesis

While the core thesis of the CCTM is that the brain im-
plements a Turing-style computational mechanism, many
species of the CCTM include additional tenets. A common
additional tenet is that the symbols manipulated in the com-
putations are mental representations (Pitt, 2018). A mental Pitt, D. (2018). Mental representation. In

E. N. Zalta (Ed.), The stanford encyclopedia
of philosophy (Winter 2018). Metaphysics
Research Lab, Stanford University

representation is a structure with semantic properties – it
represents something in the environment. Depending on
one’s theory of mental representations, they may represent
objects, categories of objects, properties, relations, states

11



CHAPTER 2. BACKGROUND

of affairs, or any combination of them. This tenet is often
referred to as the Representational Theory of Mind (RTM).
The fact that symbols have meanings is usually formalized
by a meaning function µ that maps symbols to meanings
(Werning, 2005). For example, the symbol swan may rep-Werning, M. (2005). Right and wrong rea-

sons for compositionality. The Composition-
ality of Meaning and Content: Foundational
Issues, 1, 285–309

resent the set of all swans in the world, i.e.,

µ(swan) = {x|x is a swan}. (2.1)

Another common additional tenet is that the mental
representations manipulated in mental computations have
a part/whole constituency structure, i.e., that there are
syntactical operations that allow to combine symbols into
complex symbols, which can be combined into yet more
complex symbols, etc. This is often referred to by saying
that the symbols themselves are “combinatorial” (Fodor &
Pylyshyn, 1988).Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-

nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28 (1-2), 3–71 The syntactical operations that allow to combine sym-

bols into complex symbol structures are usually formalized
as functions σ : Sn → S from a sequence of n symbols into
the set of symbols. For instance, there might be a syntacti-
cal rule that allows to combine adjective and noun symbols
into a noun phrase symbol, which can be formalized as a
function

σAdjectiveNounCombination : A× N→ NP,
σAdjectiveNounCombination(a, n) = a n

(2.2)

from the Cartesian product of the set of all adjectives and
the set of all nouns to the set of all noun phrases. This
syntactical rule allows, e.g., to combine the symbols black
and swan into the combinatorial symbol black swan:

σAdjectiveNounCombination(black, swan) = black swan
(2.3)

A third additional tenet, which goes hand in hand with
the ability to combine symbols into combinatorial symbols,
is the Principle of Compositionality (PoC), according to
which the meaning of a combinatorial symbol structure is
determined by the meanings of its parts and the way the
parts are put together syntactically (Janssen et al., 2012):Janssen, T. M. et al. (2012). Composition-

ality: Its historic context. In M. Werning,
W. Hinzen, & E. Machery (Eds.), The oxford
handbook of compositionality (pp. 19–46) Definition 2.2.1 (Compositional meaning function)

A meaning function µ is called compositional if for every
syntactic operation σ, there is a function µσ such that

µ(σ(s1, . . . , sn)) = µσ(µ(s1), . . . , µ(sn)). (2.4)
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For example, if the meanings of adjectives and nouns
are sets of objects in the world to which the adjective or
noun applies, then the meaning of a noun phrase may be
given by the intersection of the set to which the adjective
applies with the set to which the noun applies:

µσAdjectiveNounCombination(µ(a), µ(n)) = µ(a) ∩ µ(n) (2.5)

Thus, if the meaning of the adjective black is the set of
all black things, i.e.,

µ(black) = {x|x is black}, (2.6)

and the meaning of the noun swan is the set of all swans,
i.e.,

µ(swan) = {x|x is a swan}, (2.7)

then the meaning of the combinatorial symbol black swan
is the set of all black swans, i.e.,

µ(black swan) =µσAdjectiveNounCombination(µ(black), µ(swan))

=µ(black) ∩ µ(swan)

={x|x is black} ∩ {x|x is a swan}
={x|x is black and x is a swan}.

(2.8)

Some authors speak of “compositional symbol structures”
or “compositional concepts” to refer to what is meant here
by a “combinatorial symbol structure” or a “combinatorial
concept”. This can lead to confusion with the PoC, which
makes a claim about the semantics of the symbol structures,
not merely about the fact that they can be combined.

The three additional tenets that (1) symbols are mental
representations with (2) a part/whole constituency struc-
ture that (3) fulfill the PoC are at the heart of the Language
of Thought Hypothesis (LOTH), a species of the CCTM
put forward by Fodor (1975). An important feature of Fodor, J. A. (1975). The language of thought.

New York, NY: Crowellthe LOTH is that the systems responsible for the higher
cognitive functions are encapsulated modules that are in-
dependent from and cannot penetrate the sensory-motor
systems (Fodor, 1983). Rather, perceptual representations Fodor, J. A. (1983). The modularity of mind.

Cambridge, MA: MIT Pressare transformed into a completely new representational
format, which is inherently symbolic and amodal. These
amodal representations are fed into the systems responsi-
ble for higher cognition, and their output can be used to
program motor commands.
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One of the major attractions of the LOTH and derived
views has been their ability to serve as fully functional
conceptual systems that are able to account for many of the
higher cognitive feats like memory, knowledge, reasoning,
language, and thought.

The systems of symbols on which the brain is believed to
operate under the CCTM and LOTH are often referred to
as Amodal Symbol Systems (ASSs) to highlight two aspects
of this view: (1) The relation between the symbols and their
meaning is arbitrary, i.e., the symbols attain their meaning
by convention, or by their role in the overall symbol system,
but do not themselves resemble the objects in the world or
the perceptual states that produced them. (2) The symbols
enter into conceptual processing without grounding them
in perception (Barsalou, 1999).Barsalou, L. W. (1999). Perceptual sym-

bol systems. Behavioral and Brain Sciences,
22 (4), 577–609 There is a slight confusion in the literature regarding

the use of the term “amodal”. On some occasions, it is taken
to refer to symbols that fulfill both (1) and (2). On other
occasions, it is taken to refer to symbols that only fulfill
(1), i.e., symbols that are arbitrarily related to what they
denote but may or may not require grounding to enter into
conceptual processing. To avoid confusion, I shall only use
the term to refer to structures that fulfill both (1) and (2).
For structures that are only arbitrarily related to what they
denote but may or may not require grounding, I shall use
the term “non-perceptual symbol”. Thus, non-perceptual
symbols may be grounded in perception, whereas amodal
symbols cannot be grounded by definition. Examples for
non-perceptual symbols include words or abstract concepts.
While these symbols might not be represented in the brain’s
modal systems, they are not necessarily amodal, provided
that they can be grounded, i.e., that a connection can be
established between these symbols and modal representa-
tions.

2.3 The productivity,
compositionality, and
systematicity challenge

Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-
nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28 (1-2), 3–71

In an influential rebuttal of connectionism, Fodor and
Pylyshyn (1988) argue that the productivity, composition-
ality and systematicity of language and thought can be
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accounted for by the CCTM and, as they conjecture, only
the CCTM. Since the model presented in this thesis rejects
the CCTM, it is of value to look at these arguments in
some detail. Later, we will see how these arguments can be
circumvented.

productivity — The mind is productive in the sense that
it can produce and understand an indefinite range of
thoughts, concepts and linguistic expressions by finite
means. This, Fodor and Pylyshyn argue, requires that
these representations belong to a set that is generated
recursively out of parts – something that a Turing
machine is able to do.

systematicity — The systematicity of thought and lan-
guage refers to the fact that the capacity to produce
and understand some thoughts or linguistic expres-
sions is systematically related to the ability to pro-
duce and understand certain others. For example, the
ability to understand “Alice sees Bob” is systemati-
cally related to the ability to understand “Bob sees
Alice”. In particular, there can be no cognitive sys-
tem which understands the one but not the other.
Thus, the argument goes, there must be structural
relations between the thoughts/linguistic expressions.
Combinatorial structure of thought and language, as
proposed by the LOTH, predicts systematicity.

compositionality — Fodor and Pylyshyn claim that nat-
ural language meets the PoC. Since language is used
to express thoughts, they infer that thoughts must
also meet the PoC. This requires that thoughts have
internal structure. Since thoughts do have internal
structure in the LOTH, it can account for composi-
tionality.

systematicity of inference —Lastly, Fodor and Pylyshyn
argue that inferences of a similar logical type should
involve similar cognitive capacities. For instance, an
inference from P&Q&R to P should be executed by
the same computational process as an inference from
P&Q to P . This is a strong argument against early
connectionist models, which modeled the processing
of combinatorially structured representations as the
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spreading of activation from nodes representing com-
binatorial structures to nodes representing their con-
stituents. For instance, an inference from P&Q&R to
P was modeled by spreading activation from a neu-
ron representing P&Q&R to a neuron representing P ,
while an inference from P&Q to P was modeled in a
separate process by the spreading of activation from
a neuron representing P&Q to a neuron representing
P . Fodor and Pylyshyn claim that this is implausible,
since it allows for gaps in one’s reasoning capacities,
e.g., being able to infer that “Alice arrived” from the
proposition “Alice and Bob and Charlie arrived”, but
not being able to infer it from the proposition “Alice
and Bob arrived”.

The commonality in all these arguments is that they
show that the mind must somehow operate on structured
representations, that its operations must be sensitive to the
combinatorial structure of those representations, and that
there must be a homogeneous mechanism that processes
combinatorial structures, regardless of what the parts of
those structures are and how they are combined.

An important aspect of these properties is that while
the CCTM can account for them and classical connection-
ist architectures cannot3, they do not show that only the3 When introducing recurrency into connec-

tionist architectures, they begin to be able
to account for these properties. Fodor and
Pylyshyn might respond that in this case, the
connectionist network only serves as an im-
plementation of a CCTM architecture and
thus, at a cognitive level, is more adequately
modeled as a CCTM architecture. However,
recurrent connectionist architectures can be
built that are significantly less powerful than
a Turing machine and still meet these chal-
lenges. This has to date not been addressed
by proponents of the CCTM.

CCTM can account for them. As will be discussed in Sec-
tion 6.3, our architecture can address these challenges while
being significantly less powerful than a Turing machine,
thus being more neurally plausible.

2.4 Challenges to the Classical
Computational Theory of
Mind

In the last few decades, the CCTM been challenged by
various empirical findings and arguments, many of whichBarsalou, L. W. (1999). Perceptual sym-

bol systems. Behavioral and Brain Sciences,
22 (4), 577–609

Barsalou, L. W. (2008). Grounded cognition.
Annual Review of Psychology, 59, 617–645

Glaser, W. R. (1992). Picture naming. Cog-
nition, 42 (1-3), 61–105

are reviewed by Barsalou (1999, 2008). For instance, there
is no direct empirical evidence for amodal symbols in the
brain. To the contrary, picture naming studies suggest
that conceptual symbols have a perceptual nature (Glaser,
1992). In line with this, language processing studies suggest
that sentence meaning composition depends on deriving
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affordances from sensory-motor simulations (Glenberg &
Robertson, 2000). Glenberg, A. M. & Robertson, D. A. (2000).

Symbol grounding and meaning: A compar-
ison of high-dimensional and embodied the-
ories of meaning. Journal of Memory and
Language, 43 (3), 379–401

Neuroscientific evidence suggests that brain regions re-
sponsible for perception also become active during concep-
tual reasoning (Pulvermüller, 2005) and that damage to

Pulvermüller, F. (2005). Brain mechanisms
linking language and action. Nature Reviews
Neuroscience, 6 (July), 576–582

a perceptual region impairs conceptual reasoning about
object classes whose perceptual processing uses that region
(Pulvermüller, 1999). This speaks against a divide between

Pulvermüller, F. (1999). Words in the brain’s
language. Behavioral and Brain Sciences,
22 (2), 253–336

a perceptual domain on the one hand and a syntactical
computational domain on the other hand.

Furthermore, the CCTM is faced with the symbol ground-
ing problem (Harnad, 1990), i.e., the lack of a satisfactory Harnad, S. (1990). The symbol grounding

problem. Physica D: Nonlinear Phenomena,
42, 335–346

account for how abstract symbols can get mapped back to
perceptual representations and objects in the world, and for
how a sense of understanding of one’s reasoning can come
about in the absence of referents for the symbols. Harnad
demonstrates this by a thought experiment, according to
which a person has to learn Chinese using only a Chinese-
Chinese dictionary. Since this dictionary only explains some
meaningless symbols in terms of other meaningless symbols,
the argument goes, the person cannot possibly gain an un-
derstanding of Chinese. Harnad likens this situation to an
amodal symbol processing system: Since the system only
blindly manipulates amodal symbols, it cannot possibly
gain a sense of understanding what these symbols mean.

Related to the symbol grounding problem is the converse
problem that there is no satisfactory account for how a
perceptual state can get mapped to an abstract symbol in
the first place, and no neuroscientific evidence that such a
process exists.

Another line of criticism comes from the Embodied Cog-
nition (EC) research program. This program is quite het-
erogeneous and there is no generally agreed-upon definition
for it. Most proponents emphasize how the body, the en-
vironment, situated action, and their dynamic coupling
shape cognition in complex ways that do not get accounted
for in detached symbol manipulation (e.g., Shapiro, 2010). Shapiro, L. (2010). Embodied cognition.

RoutledgeAdditionally, some of these theories emphasize the close
coupling of perception and action during goal achievement,
which speaks against a divide between perception, discrete
symbol processing and action (e.g., Clark, 1997). As a Clark, A. (1997). Being there: Putting brain,

body, and world together again. Cambridge,
MA: MIT Pressresult, they emphasize that realistic models of cognitive

processes should be situated in a real environment.
In line with this view, many authors (e.g., Van Gelder,
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1998) have suggested what is now widely referred to as theVan Gelder, T. (1998). The dynamical hy-
pothesis in cognitive science. Behavioral and
brain sciences, 21 (5), 615–628 Dynamical Hypothesis (DH), according to which cognitive

systems are dynamical systems in closed loop with their
environment and are best modeled as such: sensory input
affects the internal dynamics of a cognitive system, which
shapes the motor output, which in turn may change the
sensory input. Usually, dynamical systems models reject
the idea of fixed representations and a central processor. In-
stead, cognition is taken to emerge from coupled specialized
systems, each of which can reside in one of infinitely many
continuous states. Additional support for the dynamicalPort, R. F. & Van Gelder, T. (1995). Mind

as motion: Explorations in the dynamics of
cognition. Cambridge, MA: MIT press hypothesis comes from the fact that cognition unfolds in

continuous time, whereas Turing-style computation unfolds
in discrete processing stages (Port & Van Gelder, 1995).Richter, M., Lins, J., & Schöner, G. (2017).

A neural dynamic model generates descrip-
tions of object-oriented actions. Topics in
Cognitive Science, 9, 35–47

Computational models of cognitive functions put for-
ward by proponents of the CCTM are often inconsistent
with neural principles of computation (e.g., Richter et al.,
2017). The kinds of computations that are known to be
supported by the brain are significantly more restricted
than the computations supported by a Turing machine.

On a related note, neural models attempting to ac-
count for combinatorial structure in representations usu-
ally suggest that neural activation patterns can encode
high-dimensional representations through mostly orthogo-
nal activity patterns in which each activity value stands for
another dimension, suggested, e.g., by Smolensky (1990).Smolensky, P. (1990). Tensor product vari-

able binding and the representation of sym-
bolic structures in connectionist systems. Ar-
tificial Intelligence, 46 (1-2), 159–217

In addition to the lack of stability that such architectures
are faced with, they would require an encoding from sen-
sory information to high-dimensional activity vectors and
a subsequent decoding from these high-dimensional vec-
tors to motor commands. This, as argued by Schöner and
Spencer (2015, p. 86), makes it difficult to maintain a
smooth coupling between sensory input and motor action.

2.5 Grounded Cognition

While the EC research program emphasizes the role of the
body and situated action for cognition, the GC research
program additionally emphasizes that cognition is inher-
ently perceptual, i.e., that there is no qualitative division
between cognitive processes at the sensory-motor level and
higher cognitive processes (Barsalou, 2008). Instead, theseBarsalou, L. W. (2008). Grounded cognition.

Annual Review of Psychology, 59, 617–645 processes only differ in their distance to the sensory-motor
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surfaces, but follow the same neural principles.
An aspect of this view is that most higher cognitive pro-

cesses rely on multimodal simulations: the brain captures
multimodal perceptual, motor, and introspective states dur-
ing experience with the world and integrates them into
multimodal representations in long-term memory. When an
object of a certain category is encountered, or knowledge
about a category is needed, multimodal representations
of instances of that category are partially reactivated to
simulate how the brain represented those instances while
perceiving them or interacting with them.

Most proponents of GC reject that amodal symbols exist
in the brain. Those who leave it open whether they exist
postulate that they work alongside modal representations.

Barsalou (1999) proposes that higher cognitive processes Barsalou, L. W. (1999). Perceptual sym-
bol systems. Behavioral and Brain Sciences,
22 (4), 577–609rely on Perceptual Symbol Systems (PSSs). According to

this view, subsets of the perceptual states that arise in
sensory-motor systems are extracted through selective at-
tention and stored in long-term memory in the form of
perceptual symbols. Importantly, perceptual symbols can
later be retrieved and function symbolically, i.e., stand for
objects or states of affairs in the world and enter into sym-
bol manipulation processes. Thereby, they give rise to the
higher cognitive competences.

Perceptual symbols are modal in the sense that they are
stored and processed in the same perceptual brain systems
as the states that gave rise to them. Moreover, their internal
structures resemble the perceptual states that produced
them to a certain degree. This is in contrast to amodal
symbols, which are believed to be stored and processed
in separate brain systems, and which bear an arbitrary
relation to what they denote.

The perceptual symbols extracted from perception and
interaction with an object of a given category can be inte-
grated into a simulator for that category. This simulator is
composed of perceptual symbols that have been extracted
from previous category members. Upon each new encounter
with a category member, the simulator becomes extended by
more multimodal information of what it is like to perceive,
think about, and interact with members of that category.
Over time, the simulator thus accumulates a large amount
of multimodal information allowing to simulate instances of
that category. Simulators can develop not only for object
categories, but also for relations. Moreover, simulators can
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be combined into combinatorial simulators. For instance,
Barsalou demonstrates how simulators for the categories
balloon, jet, cloud, above, and left of can be combined into
a simulator for the category a ballon that is above a jet to
the left of a cloud.

Barsalou (1999) states that the CCTM and LOTH areBarsalou, L. W. (1999). Perceptual sym-
bol systems. Behavioral and Brain Sciences,
22 (4), 577–609 justified in emphasizing the significance of symbolic oper-

ations for the emergence of higher cognitive functions. In
particular, he grants that one of the merits of ASSs is their
ability to function as a fully functional conceptual system,
which

“[...] represents both types and tokens, it pro-
duces categorical inferences, it combines sym-
bols productively to produce limitless concep-
tual structures, it produces propositions by bind-
ing types to tokens, and it represents abstract
concepts.” (Barsalou, 1999, p. 581)

Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-
nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28 (1-2), 3–71

Thus, his view is not directly opposed to the arguments pre-
sented by Fodor and Pylyshyn (1988). However, Barsalou
demonstrates that they can be met by PSSs as opposed to
ASSs. In the course of his article, he develops a theory that
hints at how PSSs may serve as fully functional conceptual
systems.

Barsalou’s theory is a verbal theory rather than a con-
crete model. The work on the neural basis of GC by the
DFT research community, including the architecture pro-
posed in this master thesis, aspire to provide neural process
models for Barsalou’s theory.

2.6 Concepts
In psychology, the term concept is commonly defined as
follows:

“A concept of x is a body of knowledge about
x that is stored in long-term memory and that
is used by default in the processes underlying
most, if not all, higher cognitive competences
when these processes result in judgments about
x.” (Machery, 2009, p. 11)

Machery, E. (2009). Doing without concepts.
Oxford University Press Thus, concepts are mental representations used by the

higher cognitive competences. Opinions differ as to what
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these higher cognitive competences are, but most commonly
they are taken to include categorization, induction, reason-
ing, analogy-making, conceptual combination, language
production and language understanding. In cognitive lin-
guistics, concepts are usually taken to be the meanings/ref-
erents of words. Many philosophers of mind also take
concepts to be the building blocks of thoughts (Margolis &
Laurence, 2019). Margolis, E. & Laurence, S. (2019). Con-

cepts. In E. N. Zalta (Ed.), The stanford
encyclopedia of philosophy (Summer 2019).
Metaphysics Research Lab, Stanford Univer-
sity

Before the 1960s, the prevalent view in the philosophy of
mind and in psychology was that a concept of a category of
objects is a set of separately necessary and jointly sufficient
conditions for category membership (Smith & Medin, 1981). Smith, E. E. & Medin, D. L. (1981). Cat-

egories and concepts. Cambridge, MA: Har-
vard University Press

This view, now often called the Classical Theory of Concepts
(CTOC), interfaced neatly with the CCTM and LOTH,
and many computational models of concept acquisition and
logical reasoning embraced it.

There is now considerable empirical evidence that the
CTOC is inadequate. First, most human concepts do not
have sharp boundaries, but are vague (e.g., Keefe & Smith, Keefe, R. & Smith, P. (1996). Vagueness: A

reader. Cambridge, MA: MIT Press

Hampton, J. A. (2007). Typicality, graded
membership, and vagueness. Cognitive Sci-
ence, 31 (3), 355–384

1996). Rather than judging whether or not a given concept
is applicable, humans instead seem to determine a degree of
membership. For instance, robins are commonly judged to
be more typical instances of birds than penguins (Hampton,
2007), which is taken to show that humans assign robins a
higher degree of membership in the category of birds than
penguins.

Moreover, Machery (2009) reviews evidence which sug- Machery, E. (2009). Doing without concepts.
Oxford University Pressgests that the class of concepts divides into three heteroge-

neous kinds, namely, prototypes, exemplars and theories.

Prototypes are mental representations of average or pro-
totypical instances of a category. For example, a Rosch, E. & Mervis, C. B. (1975). Family re-

semblances: Studies in the internal structure
of categories. Cognitive Psychology, 7 (4),
573–605

Smith, E. E. (1988). Concepts and thought.
The Psychology of Human Thought, 147

Gärdenfors, P. (2000). Conceptual spaces:
The geometry of thought. Cambridge, MA:
MIT Press

Gärdenfors, P. (2014). The geometry of
meaning: Semantics based on conceptual
spaces. Cambridge, MA: MIT Press

prototype of my category of dogs may be a prototypi-
cal or average dog representation. Prototype theories
differ in how these prototypes are represented, but
common formats are attribute lists (Rosch & Mervis,
1975), regions or probability distributions in percep-
tual attribute spaces or conceptual spaces (Gärden-
fors, 2000), and frames (see next section; Smith, 1988).
As an example, consider the concept red. Gärdenfors
(2014) proposes that this concept is represented in the
brain by a prototypical instance of red in HSV color
space, and that the degree of membership of a color
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in the category red is determined by the similarity
between the prototype and the color instance.

Exemplars are mental representations of concrete instances
of a category. For instance, a memory of my dog
Teddy is an exemplar for my concept of dog. Differ-
ent theories propose different representational formats
for exemplars, but commonly use points in perceptual
attribute spaces, points in conceptual spaces (Gär-
denfors, 2000), or frames (Nosofsky, 1986). ExemplarNosofsky, R. M. (1986). Attention, similar-

ity, and the identification–categorization re-
lationship. Journal of Experimental Psychol-
ogy: General, 115 (1), 39

theories of concepts propose that one’s concept of a
category is the sum total of one’s exemplars of that
category.

Theories are bodies of propositional knowledge about a
category, and are usually introduced by analogy with
scientific theories. The idea is that humans maintain
a body of propositional knowledge about a category
as part of their concept of that category. This factual
knowledge about a category may be embedded within
a more encompassing theory about a wider subject
matter. For instance, my concept of dog may include
the propositional knowledge that dogs coevolved with
humans, which is embedded within a wider theory of
biological species and their evolution.

While prototype theories, exemplar theories and theory
theories have initially been proposed as competing theories
of how humans represent concepts, reviews of empiricalMurphy, G. (2002). The big book of concepts.

Cambridge, MA: MIT Press

Machery, E. (2009). Doing without concepts.
Oxford University Press

evidence suggest that humans possess all three types of
concepts (Murphy, 2002; Machery, 2009).

A noticeable feature of human conceptual systems is
the ability to combine concepts, which allows for the con-
struction of a virtually indefinite range of new concepts out
of other concepts to model the world in intricate ways (e.g.,Hampton, J. A. & Winter, Y. (2017). Com-

positionality and concepts in linguistics and
psychology. Springer International Publish-
ing

Hampton & Winter, 2017). In the following, I use the term
combinatorial concept to refer to concepts that are built by
combining other concepts, and the term atomic concept to
refer to concepts that cannot be further subdivided into
building blocks.

2.6.1 Atomic concepts

Atomic concepts constitute the basic building blocks of
the human conceptual system. They can be classified into
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attributes, values, and relations (Barsalou, 1992). Barsalou, L. W. (1992). Frames, concepts,
and conceptual fields. In A. Lehrer & E. F.
Kittay (Eds.), Frames, fields, and contrasts:
New essays in lexical and semantic organiza-
tion. Lawrence Erlbaum Associates, Inc

Attributes are concepts that describe an aspect of an ob-
ject. Examples include color, orientation, shape,
size, or location. Attributes can be categorical
(e.g., shape, which may take the categorical values
rectangle, circle, etc.) or quantitative. Quanti-
tative attributes can be discrete (e.g., number of legs)
or continuous (e.g., size). Barsalou (1992) notes that
concepts are only attributes when they describe an
aspect of a larger whole. Thus, for instance, color
becomes an attribute when viewed as an aspect of a
bird, but is not an attribute when viewed in isolation.
Note that the term feature is sometimes used instead
of attribute, especially in DFT models. To remain
consistent with naming conventions from both frame
theory and DFT, I use both terms interchangeably.

Values are subordinate concepts of attributes. For in-
stance, red is a value of color, diagonal is a
value of orientation and triangle is a value of
shape. In exemplar models, attributes are usually
assigned a single value (e.g., 45◦ for orientation).
In prototype models, they can be assigned a range of
values or a set of values to model the fact that the cate-
gory encompasses multiple possible values as opposed
to a single value. It is also common to assign them a
probability distribution over values to model different
degrees of membership. For example, the concept
diagonal could be modeled as a Gaussian centered
on 45◦. Orientations close to 45◦ would then have a
high degree of membership, whereas orientations far
from 45◦ would have a low degree of membership.

Relations are also concepts, but they are special in that
they do not describe categories or aspects of objects,
but rather relationships between objects.

In this master thesis, we restrict ourselves to the at-
tributes color with the possible values red, green, blue,
yellow, orientation with the possible values horizon-
tal, diagonal, vertical and shape with the possible
values rectangle, square, ellipse, circle, triangle.
Furthermore, we restrict ourselves to the spatial relations
left of, right of, above and below.
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2.6.2 Combinatorial concepts

Combinatorial concepts are concepts that are built by com-
bining two or more other concepts, which can be atomic
or combinatorial as well (Barsalou, 2017). Whereas atomicBarsalou, L. W. (2017). Cognitively plausi-

ble theories of concept composition. In J. A.
Hampton & Y. Winter (Eds.), Composition-
ality and concepts in linguistics and psychol-
ogy (pp. 9–30). Springer International Pub-
lishing

concepts are often taken to be the meanings of words, com-
binatorial concepts are often taken to be the meanings of
nested linguistic expressions. The relationship between lan-
guage and concepts is elaborated in more detail in the next
section.

It is widely assumed that combinatorial concepts fulfill
the PoC, such that the meaning of a combinatorial concept
is determined by the meanings of its parts and the way the
parts are put together. In this case, they are often referred
to as compositional concepts.

Combinatorial concepts can be constructed ad hoc dur-
ing language processing or goal achievement (Barsalou,
1983) or be stored in long-term memory. For instance, theBarsalou, L. W. (1983). Ad hoc categories.

Memory & Cognition, 11 (3), 211–227

Barsalou, L. W. (1992). Frames, concepts,
and conceptual fields. In A. Lehrer & E. F.
Kittay (Eds.), Frames, fields, and contrasts:
New essays in lexical and semantic organiza-
tion. Lawrence Erlbaum Associates, Inc

Nosofsky, R. M. (1986). Attention, similar-
ity, and the identification–categorization re-
lationship. Journal of Experimental Psychol-
ogy: General, 115 (1), 39

combinatorial concept of a red object below a green diago-
nal object is an ad hoc concept that we may construct upon
reading and understanding a sentence, albeit the atomic
concepts that comprise the building blocks of this concept
(red, object, below, green, diagonal) are stored in
long-term memory. In contrast, the combinatorial concept
of an uncle as a brother of a parent is stored in long-term
memory.

Smith, E. E. (1988). Concepts and thought.
The Psychology of Human Thought, 147

Jackendoff, R. (1987). The status of thematic
relations in linguistic theory. Linguistic In-
quiry, 18 (3), 369–411

Cohen, B. & Murphy, G. L. (1984). Models
of concepts. Cognitive Science, 8 (1), 27–58

Sowa, J. F. et al. (2000). Knowledge rep-
resentation: Logical, philosophical, and com-
putational foundations. Pacific Grove, CA:
Brooks/Cole

Barsalou, L. W. (1999). Perceptual sym-
bol systems. Behavioral and Brain Sciences,
22 (4), 577–609

Frames and frame graphs are models of combinatorial
concepts (Barsalou, 1992). They are widely believed to be
able to model many or all combinatorial concepts present in
human thought and are used pervasively in exemplar-based
and prototype-based models of concepts (e.g., Nosofsky,
1986; Smith, 1988), in natural language semantics (e.g.,
Jackendoff, 1987), in cognitive psychology under the name
“schemata” (Cohen & Murphy, 1984), in amodal theories
of knowledge (Sowa et al., 2000), and in modal theories of
knowledge (Barsalou, 1999).

A frame is a set of attributes that are shared by category
members. For example, a frame for the concept car could
include the attributes marque, color, engine, maxi-
mum speed, etc. (Figure 2.1a). Note that this frame-based
model of the concept car is highly impoverished and only
serves for illustrational purposes. More exhaustive models,
still based on frames, represent a car as composed of a
hierarchy of parts, along with their meronomic relations,
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car
marque
color
engine
max	speed

(a) A car frame.

Daniel's	car	exemplar
marque:	Opel
color:	HSV(0°,	95%,	11%)
engine:	four-cylinder
max	speed:	187	km/h

(b) A car exemplar.

red	Opel	prototype
marque:	Opel
color:	red

(c) A red Opel prototype.

Figure 2.1: Examples for a car frame. These examples show how the car frame can be applied to model car
exemplars and car prototypes.

spatial arrangement and functional relationships (Barsalou,
1999).

Exemplars of a given category assign values to each
attribute. For instance, my car could be formalized as the
exemplar depicted in Figure 2.1b. Prototypes of a given
category may assign values, ranges of values or a probability
distribution over values to a subset of the attributes. For
instance, a prototype for the concept of a red Opel car
could be formalized as the prototype depicted in Figure 2.1c.
Note that in contrast to the exemplar, the color attribute
is assigned a value of red instead of a concrete HSV color
value. red may stand for a prototype of the concept of red,
e.g., in the form of a Gaussian centered on an average red Petersen, W. (2007). Representation of con-

cepts as frames. The Baltic International
Yearbook of Cognition, Logic and Communi-
cation, 2, 151–170

Daniel's	car	exemplar
marque:	Opel
color:	HSV(0°,	95%,	11%)
engine:	four-cylinder
max	speed:	187	km/h

blue	car	prototype
color:	blue

red	Opel	prototype
marque:	Opel
color:	red

crashed	into

crashed	into

Figure 2.2: Frame graph for the
proposition “A red opel crashed into
Daniel’s car and a blue car”.

value.
Introducing relations between frames allows to encode

the fact that objects bear certain relations to each other,
which allows to express a wider range of propositions and
combinatorial concepts. Graphs consisting of frames and
relations between frames are commonly referred to as frame
graphs (Petersen, 2007). Frame graphs are able to represent
adjective-noun combinations (e.g., red apple), adjective
conjunctions (e.g., red diagonal object), noun-noun
combinations (e.g., tree house), arbitrary denotational
phrases, and arbitrary propositions expressible in first-order
logic. As such, they promise a unifying role in models of the
representational vehicles underlying the higher cognitive
functions.

As an example, consider the proposition expressed by
the sentence “A red opel crashed into Daniel’s car and a
blue car.” The meaning of that sentence can be regarded
as a combinatorial concept, which can be modeled as the
frame graph depicted in Figure 2.2. Note that “Daniel’s
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car” is a proper name referring to a concrete car and is
therefore modeled as an exemplar, whereas “a red Opel”
and “a blue car” are indefinite descriptions (Ludlow, 2018)Ludlow, P. (2018). Descriptions. In E. N.

Zalta (Ed.), The stanford encyclopedia of phi-
losophy (Fall 2018). Metaphysics Research
Lab, Stanford University

specified only by their attributes and are therefore modeled
as prototypes.

prototype	2
color:	red

prototype	3
color:	green
orientation:	diagonal

prototype	4
color:	blue

below above

prototype	1
color:	red

right	of

Figure 2.3: Combinatorial concept for the
noun phrase “a red object right of a red
object below a green diagonal object and
above a blue object”.

In addition to full propositions, frame graphs can also
model the meanings of noun phrases. For instance, the noun
phrase “a red object right of a red object below a green
diagonal object and above a blue object” can be expressed
as the frame graph in Figure 2.3. The target of the noun
phrase is surrounded by a dashed line.

The notion of a frame graph introduced here is largely
equivalent to the notion of a simulator employed by Barsa-
lou. A distinguishing characteristic is that Barsalou’s simu-
lators may contain information about the spatial extents
and spatial positions of their components, whereas the
frame graphs introduced here are reduced to content infor-
mation. However, it is easy to imagine how to incorporate
spatial extents and positions into frame graphs in the form
of additional attributes specifying outlines and coordinates.

2.7 The Parallel Architecture

The linguist Jackendoff (2002) develops what he calls theJackendoff, R. (2002). Foundations of lan-
guage: Brain, meaning, grammar, evolution.
Oxford University Press Parallel Architecture (PA), a functional description of how

language is processed in the human brain. A visualization of
this architecture is depicted in Figure 2.4. According to his
idea, natural language has multiple parallel sources of com-
binatoriality, and each of them creates its own characteristic
type of structure.

In particular, he proposes that raw speech input is fed
into a phonological analysis system, which outputs a phono-
logical structure (e.g., phonetic, syllabic and prosodic struc-
ture). This phonological structure is fed into a syntactical
analysis system, which generates a syntactical structure
(usually, a syntax tree). The syntactical structure is in turn
fed into a semantical analysis system that generates a con-
ceptual structure. The conceptual structures generated by
his system are equivalent to frame graphs (e.g., Jackendoff,
2002, p. 6).

As an example, consider noun phrases. A noun phrase
is a phrase that picks out an object by describing its cate-
gory, attributes, and relationships with other objects. The
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Figure 2.4: The Parallel Architecture of
language processing developed by
Jackendoff (2002). Speech input enters into
a phonological analysis system, which
outputs a phonological structure (here
reduced to a string of phonemes). This
phonological structure feeds into a
syntactical analysis system, outputting a
syntactical structure (here reduced to a
syntax tree). The syntactical structure in
turn feeds into a semantical analysis system,
which constructs a conceptual structure
(here a frame graph).

Phonological	analysis

Speech	input

Phonological	structure

Syntactical	analysis

Syntactical	structure

Semantical	analysis

Conceptual	structure

formal grammar depicted in Figure 2.5 allows to generate
most of the possible English noun phrases. An exemplary
lexicon of nouns, adjectives and prepositions restricted to
colors, orientations, shapes, and spatial relations is given
in Figure 2.6.

Figure 2.5: Formal grammar for English
noun phrases. NP: noun phrase, Det:
determiner, N: noun, AP: adjective phrase,
PP: prepositional phrase, Conj: conjunction,
A: adjective.

1 NP → Det N
2 N → AP N | N PP
3 PP → P NP | PP Conj PP
4 AP → A | AP AP
5 Det → a | the
6 Conj → and | or

Figure 2.6: Formal grammar for an
exemplary lexicon of nouns, adjectives and
prepositions.

1 N → object | rectangle | square | ellipse |
circle | triangle

2 A → red | blue | green | yellow | horizontal |
diagonal | vertical

3 P → left of | right of | above | below
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Figure 2.7: Syntax tree for the noun
phrase “a red object right of a red object
below a green diagonal object and above a
blue object”. Semantically relevant
constituents are indexed.

NP1

N

N

PP4

NP6

N

PP9

PP16

NP18

N

N20

object

AP

A19

blue

Det

a

P17

above

Conj

and

PP10

NP12

N

N15

object

AP

AP

A14

diagonal

AP

A13

green

Det

a

P11

below

N8

object

AP

A7

red

Det

a

P5

ofright

N3

object

AP

A2

red

Det

a

Figure 2.8: Frame graph as a conceptual
structure for the sentence “a red object right
of a red object below a green diagonal object
and above a blue object”. Constituents are
dovetailed by curly brackets and matched to
the syntactical constituents from Figure 2.7.
Frames and relations are indexed.

prototype	3
color:	green	(A13)
orientation:	diagonal	(A14)

prototype	2
color:	red	(A7)

prototype	1
color:	red	(A2)

prototype	4
color:	blue	(A19)

relation	2
below
(P11)

relation	3
above
(P17)

relation	1
right	of
(P5)

NP1
PP4

NP6
PP9

PP10

N
P 1
2

PP16

N
P 1
8

An example for a noun phrase that can be generated
with that grammar is “a red object right of a red object be-
low a green diagonal object and above a blue object”. The
PA proposes that speech input is first analyzed for phono-
logical structure, outputting a phonetic representation (“[e
rEd abdZEkt rajt @v e rEd abdZEkt b@lo e rin dajæ@n@l ab-
dZEkt ænd @b@v e blu abdZEkt]”) as well as syllabic, prosodic
and morphophonological structure that need not concern
us. The phonological structure is analyzed for its syn-
tactic structure in accordance with the formal grammar,
outputting the syntax tree depicted in Figure 2.7. This
syntax tree is fed into a semantic interpretation system that
generates a conceptual structure in the form of the frame
graph depicted in Figure 2.8, the conceptual constituents
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of which are matched to the syntactical constituents. This
conceptual structure can then serve as a basis for other
cognitive processes.

The motivation for the PA is primarily linguistic in
nature. The fact that phonetic, syntactic and conceptual
structure feature the proposed sort of combinatoriality is
inferred from observations of natural language behavior; it
is implicit in the way we use language. Jackendoff maintains
that this combinatoriality is explicitly represented in the
brain and not just an emergent property of language, but
does not commit to an explicit model for how it is repre-
sented. Section 6.2 discusses some neural models for how
combinatorial structure may be represented in the brain.

Psycholinguists have long assumed that syntactical and
semantic processing proceed in modular systems that are
impenetrable by perceptual systems and that perform con-
ceptual processing in the form of amodal symbolic process-
ing. The PA, in particular, is committed to the LOTH. In
contrast, GC highlights the importance of grounding lan-
guage understanding in perception. Thus, we suggest that
the PA should be supplemented by a language grounding
architecture. This architecture is the focus of this mas-
ter thesis and will be described in depth in the upcoming
chapters.

2.8 The grounding process

One of the claims of grounded cognition is that conceptual
processing is inherently perceptual in nature. This requires
the ability to establish a connection between concepts and
perception, a process we refer to as grounding. Two types of
grounding processes can be distinguished. First, a concept
could be activated by some high-level cognitive process,
e.g., by input from a language processing system, and that
concept is then grounded by finding and attending to an
object in the perceptual array that matches this concept.
We refer to that object as the target of the grounding
process. Second, an already attended object or set of objects
could cause a matching concept to be activated or a new
combinatorial concept to be built out of other concepts.
We refer to the latter process as describing. This master
thesis focuses on a solution to the first problem.
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As an example, consider the combinatorial concept de-
scribable by the phrase “a red object right of a red object
below a green diagonal object and above a blue object” (Fig-
ure 2.8). If the perceptual input is given by Figure 2.9, then
grounding the concept would surmount to raising attention
to the object surrounded by dashed lines.

Figure 2.9: Example scene. The grounded
combinatorial concept is surrounded by
dashed lines.

The nervous system may ground a combinatorial con-
cept via one of three distinct cognitive mechanisms. The
first mechanism is a kind of heuristic approach, in which,
through repeated acquaintance with objects that fall under
a combinatorial concept, characteristic features are learned

Keil, F. C. & Batterman, N. (1984). A
characteristic-to-defining shift in the develop-
ment of word meaning. Journal of Verbal
Learning and Verbal Behavior, 23 (2), 221–
236

which allow to identify the instances of that concept with-
out explicitly considering the combinatorial structure of
the concept (Keil & Batterman, 1984). For instance, while

Figure 2.10: A mental model for the
combinatorial concept “a red object right of
a red object below a green diagonal object
and above a blue object”.

the concept of a car represents it as composed of a hierar-
chy of parts, along with their meronomic relations, spatial
arrangement and functional relationships, this structure
is usually not explicitly considered when identifying cars.
Instead, cars are identified by diagnostic features such as
their characteristic shape or the sound of a motor.

Kounatidou, P., Richter, M., & Schöner, G.
(2018). A neural dynamic architecture that
autonomously builds mental models. In C.
Kalish, M. A. Rau, X. Zhu, & T. T. Rogers
(Eds.), Proceedings of the 40th annual meet-
ing of the cognitive science society. Austin,
TX: Cognitive Science Society

The second mechanism consists in building a mental
model of a combinatorial concept, which can be thought of
as an image-like representation of a prototypical instance
of that concept. For example, upon hearing the phrase
“a red object right of a red object below a green diagonal
object and above a blue object” (Figure 2.8), a human
interpreter is likely to first imagine this arrangement of
objects, i.e., to build a mental model (Figure 2.10). This
mental model can then guide visual search in the perceptual
array, e.g., by trying to match the mental model to a visual
arrangement of objects in the perceptual array. A DFT
account for building mental models of this kind has been
given by Kounatidou et al. (2018). An account for matching
mental models to a scene is as of yet lacking.

The third mechanism explicitly considers the structure
of the combinatorial concept and matches the parts of
the concept (i.e., the frames and relations) to aspects of
perception. This strategy is the focus of this master thesis.

2.9 Dynamic Field Theory
Schöner, G. & Spencer, J. (2015). Dynamic
thinking: A primer on dynamic field theory.
New York, NY: Oxford University Press

Dynamic Field Theory (DFT) (Schöner & Spencer, 2015)
is a mathematical and conceptual framework for the mod-
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eling of cognitive processes. In line with the dynamical
hypothesis, DFT models cognitive systems as dynamical
systems, i.e., as continuous-time differential equations. In
addition, it emphasizes neural principles of computation,
embodiment, grounded cognition, and stable states. DFT
accounts of many cognitive processes have been given, in-
cluding perceptual, motor, and grounding processes. These
process models are iteratively being joined together into
more complex models with the ultimate goal of accounting
for cognition as a whole. This section summarizes both the
key principles and the mathematical formalization of DFT.

2.9.1 Key principles

Process models — According to the levels of analysis
proposed by Marr (1982), DFT models cognitive sys- Marr, D. (1982). Vision: A computational

investigation into the human representation
and processing of visual information. San
Francisco: WH Freeman

tems at the implementational level, i.e., it models not
just what the system does, but also how it is physi-
cally realised. In other words, it builds process models,
which are to be distinguished from algorithmic or sta-
tistical models that merely account for what a system
does effectively, or how to account for empirical data,
but not for how the system does what it does.

Neural principles of computation – Most proponents
of DFT criticize algorithmic models for being too lib-
eral in the computational operations that they allow
for. The computational operations that networks of
neurons are able to perform are significantly more
restricted than the computational operations that a
Turing machine can perform. Thus, a goal of DFT is
to provide a coherent framework for building models
out of building blocks that are based on established
neural principles. These building blocks can be joined
together into architectures that comprise process mod-
els for cognitive feats.

Population coding — A central tenet of DFT is that
behaviorally relevant parameters are coded for by the
activity of populations of neurons in circumscribed
brain areas, as opposed to the activity of single neu-
rons – an idea referred to as population coding. Conse-
quently, all neurons in a given population contribute
to behavior, not just, e.g., the most active one. Argu-
ments for this claim include the fact that the activity
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of a single neuron is ambiguous with respect to the pa-
rameter value that it codes for, and the fact that using
just a single neuron to code for a certain parameter
value makes behavior highly susceptible to the influ-
ence of noise. Moreover, studies have demonstrated
population coding for saccade parameters in the su-
perior colliculus (Lee, Rohrer, & Sparks, 1988) andLee, C., Rohrer, W. H., & Sparks, D. L.

(1988). Population coding of saccadic eye
movements by neurons in the superior collicu-
lus. Nature, 332 (6162), 357

for arm movement parameters in the motor cortex
(Georgopoulos, Kettner, & Schwartz, 1988). Con-

Georgopoulos, A. P., Kettner, R. E., &
Schwartz, A. B. (1988). Primate motor cor-
tex and free arm movements to visual targets
in three-dimensional space. II. Coding of the
direction of movement by a neuronal popu-
lation. Journal of Neuroscience, 8 (8), 2928–
2937

sequently, models in DFT do not model individual
neurons, as is done, e.g., by connectionists. Instead,
the activity of a population of neurons is captured
by a Dynamic Neural Field (DNF) that is defined
over the space of behaviorally relevant parameters
to which the population is responsive (e.g., saccade
direction and amplitude), assigns a continuous degree
of activation to each point in that space, and evolves
in continuous time. The activation distribution of a
DNF can be regarded as modeling the Distribution of
Population Activation (DPA) of the neural population
that it models. A DPA of a given neural population
in a given time interval is obtained by summing up
their tuning curves weighted by their average firing
rates. The result is then corrected for non-uniform
sampling, e.g., by dividing it by the unweighted sum
of the tuning curves.

Embodiment — In line with the EC stance, DFT puts
emphasis on creating embodied robotic implemen-
tations of theoretical models in real environments
with real sensory input and a closed sensory-motor
loop. First, this can illustrate how the body, the
environment, situated action, and their dynamic cou-
pling may shape cognition in intricate ways, which is
virtually impossible to model in artificial situations.
Second, it can demonstrate that the architecture can
function autonomously in the world, as opposed to
only in artificial experimental situations. Third, it
can demonstrate the robustness of the architecture
to real, possibly noisy, sensory inputs. Fourth, it can
demonstrate that the dynamical system exhibits sta-
bility even if it is in closed loop with the environment,
in which case sensory-motor contingencies exist that
do not exist in artificial experimental situations and
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might lead to unexpected behavior.

Stability —Cognitive systems are subject to many sources
of noise. These include the inherent noise in the ner-
vous system, sensor noise and motor noise. Moreover,
sensory input is constantly changing. Cognitive sys-
tems must resist these sources of noise and maintain
invariant representations in the face of them. DFT
achieves this through dynamical systems that are in
attractor states most of the time, resisting perturba-
tions due to noise and quickly changing environmental
circumstances. These attractor states comprise the
invariant representations of the system and afford
stable behavior.

Instabilities — Dynamic instabilities, which may be in-
duced by significant changes in environmental cir-
cumstances or internal representations, can lead to a
change in the attractors and, therefore, a change in
the system’s internal representations. These changes
in the attractors occur at discrete moments in time,
which can account for how discrete events like detec-
tion or selection emerge in continuous time.

2.9.2 Dynamic Neural Fields

In the following, I summarize the mathematical framework
underlying DFT. The notational conventions of the equa-
tions are mostly adopted from Richter (2018). Richter, M. (2018). A neural dynamic model

for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

The activity of a population of neurons is captured by
a Dynamic Neural Field (DNF), which is a function u(~x, t)
defined over the continuous attribute dimensions ~x to which
that population is responsive, and over continuous time t.
It assigns a continuous degree of activation to each point
in that space at each point in time.

The field receives external input from sensors or other
fields, formalized as a function s(x, t), and in turn yields
an output g(u(~x, t)) that may serve as input to other fields.

0
0

1

Figure 2.11: Sigmoid function g(u).g(u) is the sigmoid function (Figure 2.11),

g(u) =
1

1 + exp(−β(u− u0))
. (2.9)

u0 controls the inflection point of the sigmoid, whereas
β controls its steepness. The sigmoid function produces

33



CHAPTER 2. BACKGROUND

values close to 1 for positive levels of activation, values close
to 0 for negative levels of activation, and features a smooth
transition in-between. This ensures that only fields that
have formed peaks of positive activation have an output
that may affect the dynamics of other fields.

00

8

input s(x, t)        

5

0

5

activation u(x, t)        

00

1

output g(u(x, t))        

Figure 2.12: An exemplary Dynamic
Neural Field. From top to bottom: The
input s(x, t), the activation u(x, t), and the
output g(u(x, t)).

Figure 2.12 depicts a snapshot of the input, activation
and output of an exemplary 1-dimensional DNF.

The activation u(~x, t) evolves in continuous time t based
on the differential equation

τ u̇(~x, t) =− u(~x, t) + h+ s(~x, t) + wξ · ξ(~x, t)

+

∫
g(u(~x ′, t)) k(~x− ~x ′) d~x ′.

(2.10)

The rate of change of the activation depends on a time
constant τ , on u(~x, t) itself, on a negative resting level h,
on an external input s(~x, t), and on Gaussian white noise
ξ(~x, t) with strength wξ.Jancke, D., Erlhagen, W., Dinse, H. R.,

Akhavan, A. C., Giese, M., Steinhage, A.,
& Schöner, G. (1999). Parametric popula-
tion representation of retinal location: Neu-
ronal interaction dynamics in cat primary vi-
sual cortex. Journal of Neuroscience, 19 (20),
9016–9028

The integral formalizes lateral interactions within the
field as a convolution of the output of the field, g(u(~x ′, t)),
with a kernel k(∆~x), which will henceforth be abbreviated
as [k ∗ g(u)](~x, t). The kernel has a homogeneous structure
throughout the field and only depends on the distance
∆~x = ~x− ~x ′ between two points.

0

Figure 2.13: A lateral interaction kernel
with local excitation and global inhibition.

0

Figure 2.14: A lateral interaction kernel
with local excitation and mid-range
inhibition.

In line with findings regarding recurrent interaction
patterns in the cortex (Jancke et al., 1999), the kernels
chosen by DFT are Mexican-hat functions that feature local
excitation and global or mid-range inhibition. Figure 2.13
depicts an exemplary kernel with global inhibition and
Figure 2.14 depicts an exemplary kernel with mid-range
inhibition. This is formalized by the equation

k(∆~x) = wexc · ϕ(∆~x, ~µexc, ~σexc)

− winh,mid · ϕ(∆~x, ~µinh,mid, ~σinh,mid)

− winh,glob,

(2.11)

where wexc, ~µexc and ~σexc respectively determine the strength,
center and standard deviation of local excitation, winh,mid,
~µinh,mid and ~σinh,mid determine the strength, center and
standard deviation of mid-range inhibition and winh,glob de-
termines the strength of global inhibition. The centers ~µ are
usually set to 0. The strength of local excitation is higher
than the strength of mid-range inhibition (wexc > winh,mid),
whereas the range is lower (~σexc < ~σinh,mid). ϕ is a multi-
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variate Gaussian function without covariance defined as

ϕ(∆~x, ~µ, ~σ) = a · exp

(
−

d∑
i=1

(∆~xi − ~µi)2

2~σi
2

)
, (2.12)

where ~µ is the mean vector, ~σ the standard deviation vector
and a the amplitude of the Gaussian.

With small or no external input, lateral interactions are
not effective, causing the field to remain in a subthreshold
attractor at h + s(~x, t). Due to the term −u(~x, t) in the
field dynamics, the activation is always driven back to this
attractor and can thereby resist noise.

When input of sufficient strength is applied, the sub-
threshold attractor becomes unstable, causing the field to
form peaks of positive activation at positions of strong input.
The size and number of peaks depend on the parameters of
the interaction kernel. With strong global inhibition, a field
can form a single peak that inhibits all others. With small
or no global inhibition, a field can form multiple peaks,
the number of which depends on the range and strength of
mid-range inhibition. This is elaborated in more detail in
Section 2.9.4.

Peaks are the units of representation in DFT. Through
excitatory or inhibitory coupling between fields, the output
of one field can serve as input to another field. This way,
complex cognitive architectures can be built out of mutually
coupled fields.

2.9.3 Dynamic Neural Nodes

Dynamic Neural Nodes (DNNs) follow the same dynamics
as fields, but they are 0-dimensional in the sense that they
only have a single activation value that evolves in time
according to the equation

τ u̇(t) = −u(t) + h+ s(t) + wse · g(u(t)). (2.13)

Instead of a convolution, they have a single weighted
self-excitation term with strength wse. These nodes can be
coupled to fields and thereby activate continuous represen-
tations, as described in Section 2.9.5.
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Figure 2.15: The detection instability. At time t2, input is applied, causing the subthreshold attractor to become
unstable and an above-threshold attractor to appear. At time t5, the activation becomes positive, causing the field
to yield output. At time t7, the activation has reached the above-threshold attractor.

00

8
input s(x, t)        

00

8

00

8

00

8

00

8

00

8

00

8

5
0
5

activation u(x, t)        
5
0
5

5
0
5

5
0
5

5
0
5

5
0
5

5
0
5

00

1
output g(u(x, t))        

00

1

00

1

00

1

00

1

00

1

00

1

t1 t2 t3 t4 t5 t6 t7
time

Figure 2.16: The reverse detection instability. At time t2, input has been removed, causing the above-threshold
attractor to become unstable and the subthreshold attractor to reappear. At time t4, the activation has become
negative, causing output to cease. It takes time for the field to settle again into the subthreshold attractor.

2.9.4 Instabilities

While fields and nodes evolve in continuous time, qualitative
shifts of behavior can occur at discrete moments in time
through dynamic instabilities.

2.9.4.1 Detection instability

When localized input of sufficient strength is applied in a
certain region, lateral interactions become effective in that
region. Positions in that region locally excite each other and
inhibit more distant regions. This makes the subthreshold
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Figure 2.17: The selection instability. At time t1, two sources of input have appeared, causing the field to start to
form subthreshold bumps of activity. At time t4, the activation of the right bump has become positive, causing
the field to yield output in that region. Through global inhibition, the left bump is suppressed, preventing it from
becoming a peak of positive activation.

attractor disappear and creates an above-threshold attrac-
tor, causing the field to form a peak of positive activation
in that region (Figure 2.15). This bifurcation is called the
detection instability, since a way to look at it is as the de-
tection of a significant source of input. When the strength
of localized input goes below a critical threshold again, the
field goes through the reverse detection instability, in which
the above-threshold attractor disappears, causing the peak
to dissolve (Figure 2.16).

2.9.4.2 Selection instability

As mentioned previously, a field with strong global inhibi-
tion can only form a single peak. When multiple regions
simultaneously receive localized input with similar strength,
the peak that happens to reach a positive activation level
first suppresses all other peaks, causing the field to make a
selection decision (Figure 2.17). We refer to this instability
as the selection instability.

2.9.4.3 Working memory

If the amount of local excitation in a field is strong enough,
fields can form self-sustained peaks, i.e., peaks that remain
stable even after the input in their region is removed (Fig-
ure 2.18). In other words, self-sustained peaks are peaks for
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Figure 2.18: Working memory. At t2, input to the field is removed, causing the peak to become weaker. However,
due to self-excitation, the peak never goes through the reverse detection instability, but instead remains positive and
continues yielding an output.

which the reverse detection instability does not occur. This
allows the fields to implement a form of working memory.

2.9.4.4 Instabilities for DNNs

DNNs feature similar dynamic instabilities as DNFs. When
input of sufficient strength is applied, a DNN can go through
a detection instability and, conversely, through a reverse
detection instability upon removal of the input. DNNs can
thus have two qualitatively different kinds of states. When
they have a positive activation value and consequently an
output close to 1, they can be regarded as active. When
they have a negative activation value and consequently an
output close to 0, they can be regarded as inactive. With
sufficient self-excitation, a DNN can be made self-sustained,
such that it remains active upon input removal.

DFT postulates that the primitive mechanisms of de-
tection, selection and memory are the basic cognitive mech-
anisms, and that complex cognitive processes emerge from
these three basic mechanisms in coupled architectures.

2.9.5 Coupling

As hinted at already, fields can be coupled with other fields
to build complex cognitive architectures. More precisely,
the output of a field or node A can serve as input to a field
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or node B. Depending on the dimensionalities of A and B,
different forms of coupling are possible.

One-to-one — The simplest form of coupling is a one-to-
one coupling, in which the output of A, multiplied by
a weight w, directly serves as input to B according
to the equation

sB,A(~x, t) = w · g(uA(~x, t)). (2.14)

This form of coupling requires that A and B have the
same dimensionality.

Expansion — If A has a smaller dimensionality than B,
then the vector ~xB over which B is defined has some
additional dimensions to the vector ~xA over which A
is defined. In this case, the entries of the dimensions
shared by ~xA and ~xB are held constant across all
values of the additional dimensions of ~xB. We refer
to this operation as an expansion. The input to B is
then given by the equation

sB,A(~xB, t) = w · g(uA(~xA, t)). (2.15)

In case A is one-dimensional and B is two-dimensional,
this creates a ridge input to B for each peak in A. In
case A is two-dimensional and B is three-dimensional,
it creates a cylindrical input to B for each peak in A.

Contraction — In the converse case where A has larger
dimensionality than B, ~xA has some additional di-
mensions to ~xB, which need to be dropped. We refer
to this operation as a contraction. There are two ways
in which this can happen. The first way is to take
the integral over the additional dimensions,

sB,A(~xB, t) = w ·
∫
. . .

∫
dxb+1 . . . dxag(uA(~xA, t)),

(2.16)

where a refers to the dimensionality of A and b to
the dimensionality of B. Note that we assumed that
the additional dimensions of A are given by the last
(a− b) entries of ~xA.
The second way is to take the maximum along the
additional dimensions,

sB,A(~xB, t) = w · max
xb+1,...,xa

g(uA(~xA, t)). (2.17)

39



CHAPTER 2. BACKGROUND

Point-spread – Long-range projections in the cortex usu-
ally undergo a point-spread: A given location in the
parameter space of field A projects not just to the
same location in field B, but to a range of nearby
locations. Point-spread can be modeled by convolving
the output of field A with a Gaussian kernel kB,A(~x)
before it serves as input to field B. In that case, the
above equations have to be wrapped inside a convolu-
tion.

Global excitation, global inhibition — Nodes may be
coupled to fields in two ways. In the first way, node A
just projects uniformly to every position in field B,

sB,A(~xB, t) = w · g(uA(t)). (2.18)

If w is positive, this form of coupling is referred to
as a boost or global excitation. Thus, upon activation
of node A, all positions in field B receive excitatory
input. This may be used as a mechanism for destabi-
lizing the subthreshold attractor.
If w is negative, this form of coupling is referred to
as global inhibition. Thus, upon activation of node
A, all positions in field B receive inhibitory input.
This may be used to destabilize an above-threshold
attractor.

Patterned connection — The second way in which a
node A may be coupled to a field B is by means of a
patterned connection, i.e., a connection in which node
A projects non-uniformly to different locations in field
B. The synaptic connection weights are modeled as
a function W : Rdim(~xB) → R whose values W (~xB)
model the degree to which location ~xB is excited by
node A. The input to field B is then given by

sB,A(~xB, t) = W (~xB) · g(uA(t)). (2.19)

As described in detail in Section 2.9.9, patterned
connections may serve to model atomic concepts.

2.9.6 Steerable neural mappings
Schneegans, S. & Schöner, G. (2012). A neu-
ral mechanism for coordinate transformation
predicts pre-saccadic remapping. Biological
Cybernetics, 106 (2), 89–109

Steerable neural mappings are neural operations that allow
to perform coordinate shifts and are supported by empir-
ical evidence (Schneegans & Schöner, 2012). Given two
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fields A and B defined over spatial coordinates, where the
peaks in A represent the spatial position of objects and
B contains a peak at some reference position, the output
of a steerable neural mapping yields the positions of the
peaks in A relative to the reference position in B. As such,
steerable neural mappings can be regarded as performing
a translation operation, i.e., as subtracting the reference
position from the positions represented in A.

The basis for a steerable neural mapping is a transfor-
mation field T with twice the number of dimensions as the
spatial fields. T follows the dynamics

τ u̇T (~xA, ~xB, t) = −uT (~xA, ~xB, t) + h

+ [kT,T ∗ g(uT )](~xA, ~xB, t)

+ [kT,A ∗ g(uA)](~xA, t)

+ [kT,B ∗ g(uB)](~xB, t),

(2.20)

The first two lines are the generic DNF equation. The third
line features an expansion of the output of field A along
the additional dimensions ~xB and the fourth line features
an expansion of the output of field B along the additional
dimensions ~xA. The resting level h is chosen in such a way
that the field only forms peaks where input from A and B
overlaps.

The output of field T is used as input to a field C, which
is supposed to hold the object positions from field A relative
to the reference position from field B. To achieve this, the
coupling from T to C is of a special nature: it consists of a
diagonal read-out given by

sC,T(~x, t) =

∫
d~pg(uT (~x− ~p, ~p, t)). (2.21)

For speeding up numerical simulations, steerable neural
mappings are often approximated by convolutions of field
A with a kernel given by field B.

2.9.7 Behavioral organization

One of the goals of DFT is to build models that evolve
autonomously according to the underlying dynamical sys-
tem. In particular, the system should not depend on a user
sending commands or continually providing input. The
emergence of discrete cognitive processes, their temporal
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organization, and coordinated use of shared resources need
to be accounted for.Richter, M., Sandamirskaya, Y., & Schöner,

G. (2012). A robotic architecture for
action selection and behavioral organiza-
tion inspired by human cognition. In 2012
IEEE/RSJ international conference on intel-
ligent robots and systems (pp. 2457–2464).
New York, NY: IEEE

DFT architectures are subdivided into Elementary Be-
haviors (EBs), each of which constitutes a functional part
of the architecture (Richter et al., 2012). Examples of EBs
are motor behaviors (e.g., an arm movement or a saccade),
perceptual behaviors (e.g., raising covert attention to an
object in the perceptual array) or more abstract cognitive
behaviors (e.g., analyzing an attended perceptual object or
storing it in memory).

An EB is implemented via two neural nodes (Figure 2.19).
An intention node represents whether the EB is currently
active and able to exert an influence on other parts of the
architecture. It may get triggered by external input. For
instance, a saccade intention node may get activated upon
detection of a salient object in the perceptual array. The
connectivity from the intention node to other nodes or fields
determines what the effect of this EB will be, e.g., initiating
a saccade by boosting a saccade parameter field.

i c

trigger

effect completion

Figure 2.19: Elementary behavior. “i”:
intention node, “c”: CoS node

A Condition of Satisfaction (CoS) node signals that the
EB has successfully finished. It gets activated by external
input that signals successful completion of some task. For
example, the emergence of a peak in an attention field may
signal successful completion of an EB whose goal was to
raise attention to an object. Upon activation of the CoS
node, it inhibits the intention node, making it inactive.
When this happens, the effect that the intention node had
on the architecture gets turned off. Sometimes, the fact
that an EB has finished needs to be memorized. In this
case, the CoS node can be made self-sustained.

The activation uIN of an intention node follows the
differential equation

τ ˙uIN(t) = −uIN(t) + h+ sIN(t)

+ wIN,IN · g(uIN(t))

− wIN,CN · g(uCN(t)).

(2.22)

The first two lines correspond to the generic DNN equation.
sIN(t) formalizes external input that triggers the elementary
behavior, whose source varies with task demands. The third
line formalizes the inhibitory input from the CoS node.

The activation of the CoS node follows the differential
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equation

τ ˙uCN(t) = −uCN(t) + h+ sCN(t)

+ wCN,CN · g(uCN(t))

+ wCN,IN · g(uIN(t)).

(2.23)

Again, the first two lines correspond to the generic DNN
equation. sCN(t) formalizes input that signals the successful
completion of the EB, whose source varies with task de-
mands. The third line formalizes input from the intention
node.

2.9.8 Serial order
Henson, R. & Burgess, N. (1997). Represen-
tations of serial order. In 4th neural computa-
tion and psychology workshop, london, 9–11
april 1997 (pp. 283–300). Springer

The question of how the nervous system stores serial order
of items in memory and triggers serial recall is as of yet
unresolved. There are three competing classes of models
(Henson & Burgess, 1997). Interitem association or chain-
ing models assume that sequences are stored via associations
between adjacent items, such that the representation of each
item in the sequence is associated with the representation
of its successor. The activation of an item thus triggers
the activation of its successor. Ordinal models assume
that order is represented along some continuous dimension,
e.g., by the relative strengths of the representations, such
that the representation of each item in memory is stronger
than the representation of its successor in the sequence.
The sequence can be retrieved by iteratively selecting the
strongest item, and then suppressing it so that it does not
get activated again. Positional models assume that order is
stored by associating each item with a location that encodes
its position in the sequence.

ordinal
nodes

1

memory
nodes

2

3

4

5

...

6

Figure 2.20: Serial order mechanism. An
exemplary snapshot in time is shown, during
which ordinal node 4 is active. Active nodes
are black, inactive nodes are white.

Sandamirskaya and Schöner (2010) argue that empirical

Sandamirskaya, Y. & Schöner, G. (2010). An
embodied account of serial order: How in-
stabilities drive sequence generation. Neural
Networks, 23 (10), 1164–1179

evidence supports positional models and propose a neural
implementation in the form of a sequence of ordinal nodes
that get activated one by one (Figure 2.20). Ordinal nodes
are self-sustained, such that they remain active until they
are actively inhibited. Moreover, the ordinal nodes mutually
inhibit each other, resulting in a competition that ensures
that only one of them can be active at a time. Each
ordinal node excites a self-sustained memory node, which
serves as a memory of the fact that its associated ordinal
node has already been active. Each memory node in turn
excites the next ordinal node in the sequence. Due to the
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pairwise inhibition between the ordinal nodes, activation
of a memory node does not immediately trigger activation
of the next ordinal node in the sequence. Instead, the
currently active ordinal node has to be actively inhibited in
order for the next ordinal node to become active. In order
to avoid reactivation of ordinal nodes that have already
been active, each memory node slightly inhibits its ordinal
node, biasing the competition between the ordinal nodes in
favor of the first ordinal node whose predecessor memory
node is active but whose own memory node is inactive.

The activation uiORD of the ith ordinal node follows the
differential equation

τ u̇iORD(t) = −uiORD(t) + h

+ wORD,ORD · g(uiORD(t))

− wORD,ORD′ ·
∑
i′ 6=i

g(ui
′

ORD(t))

+ wORD,MEM−1 · g(ui−1
MEM(t))

− wORD,MEM · g(uiMEM(t))

− wORD,P · g(uP(t)).

(2.24)

The first two lines correspond to the generic DNN equation.
The third line formalizes inhibition from other ordinal nodes
with strength wORD,ORD′ . The fourth line formalizes excita-
tion by the i−1th memory node with strength wORD,MEM−1.
The fifth line formalizes inhibition by the ith memory node
with strength wORD,MEM. The last line formalizes inhibition
by a proceed node with strength wORD,P, which can be any
node whose activation should trigger the next item in a
sequence to become active.

The activation uiMEM of the ith memory node follows
the differential equation

τ u̇iMEM(t) = −uiMEM(t) + h

+ wMEM,MEM · g(uiMEM(t))

+ wMEM,ORD · g(uiORD(t)).

(2.25)

Again, the first two lines correspond to the generic DNN
equation. The third line formalizes excitation of the ith
memory node by the ith ordinal node with strength wMEM,ORD.

2.9.9 Concepts

While most theories of concepts describe them at an ab-
stract representational level, previous work by the DFT
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2.9. DYNAMIC FIELD THEORY

research community has provided neural mechanisms for
representing, attending to and processing atomic concepts.
These mechanisms serve to demonstrate how continuous
perceptual representations and discrete conceptual or lin-
guistic representations may be linked.

Attributes are modeled as attribute attention fields. For
instance, the attribute color is modeled as a color attention
field defined over the continuous, cyclical hue dimension.

Values of an attribute are modeled by DNNs and pat-
terned connections to the attribute field4. In line with 4 see Equation 2.19

prototype theories of concepts, the synaptic weight pattern
usually corresponds to a Gaussian centered on a prototyp-
ical instance of the concept. For example, color concepts
are modeled as a DNN (e.g., a red color concept node) that
projects to every position in a color attention field. The
synaptic weight pattern corresponds to a Gaussian centered
on a prototypical hue value for the color category. Upon
activation of this node, a peak forms in a region of the color
attention field spanning the range of hues corresponding
to the color category. Thus, activating a concept node is
tantamount to activating or attending to the concept that it
represents, which may ultimately lead the cognitive system
to attend to objects in the perceptual array falling under
that concept.

Conversely, by introducing reverse connections, attend-
ing to an object in the perceptual array may activate concept
nodes for its attribute values (Richter, 2018); e.g., attending Richter, M. (2018). A neural dynamic model

for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

to a red object may activate the red color concept node.
Classes of relations are modeled by fields. The relations

themselves are modeled as DNNs and their synaptic con-
nections with the respective relation field. For instance,
the class of spatial relations can be modeled by a spatial
relation field, and the spatial relations can be modeled by
DNNs (e.g., a below spatial relation concept node) projecting
into that field with connectivity weights corresponding to a
spatial pattern (see Section 4.3).
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The Grounding Strategy Encoder 3

This chapter introduces the Grounding Strategy Encoder
(GSEnc), a brain system whose job it is to convert combi-
natorial concepts into a grounding strategy, i.e., a sequence
of steps that have to be performed in order to ground that
concept. This grounding strategy then serves as input to
the Grounding Strategy Executor (GSEx), which will be
introduced in Chapter 4. Its job is to execute the ground-
ing strategy, effectively causing attention to be directed
towards an object into the perceptual array that matches
the concept. One way to look at this is as supplementing
the PA with two further components (Figure 3.1). At the
present stage, the GSEnc is only described at a functional
level. Future work on the neural basis of transforming
conceptual structure into a grounding strategy is needed.

We hypothesize that the grounding of the parts of a
combinatorial concept proceeds sequentially as opposed to
in parallel. For example, the grounding of Figure 2.3 may
proceed by first grounding prototype 4 (i.e., finding a blue
object), then grounding prototype 3 (i.e., finding a green
diagonal object), then grounding prototype 2 (i.e., finding
a red object which is below the object chosen for prototype
3 and above the object chosen for prototype 4), and finally
grounding prototype 1 (i.e., finding an object which is to
the right of the object chosen for prototype 2). Arguments
for this claim are discussed in depth in Section 6.1.1
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Figure 3.1: The language grounding
system as an extension of the Parallel
Architecture. The conceptual structure
feeds into the GSEnc, which outputs a
grounding strategy in the form of a sequence
of instructions that have to be performed in
order to ground the conceptual structure in
perception. The grounding strategy feeds
into the GSEx that performs the sequence
of steps with the result of raising attention
to an object in the perceptual array that
matches the conceptual structure.

Conceptual	structure

Grounding	strategy	encoder

Grounding	strategy

Grounding	strategy	executor

(1)	start	grounding	(color:	green)
(2)	specify	attribute	(shape:	diagonal)
(3)	end	grounding

(4)	start	grounding	(color:	blue)
(5)	end	grounding

...

Target
object

Grounding
structure

Perceptual
input

3.1 Target candidate elimination

The process of grounding each frame may be regarded as a
form of multiple constraint satisfaction problem. Solving
this multiple constraint satisfaction problem may likewise
proceed by a sequence of steps that iteratively eliminate
target candidates that do not fulfill one of the constraints.
After this sequence of steps, only target candidates that
fulfill all of the constraints remain, and among those, a
selection decision can be made. Arguments for why this is
likely to be the way that humans select objects are discussed
in Section 6.1.2.

prototype	1
color:	red
orientation:	horizontal

prototype	2
color:	green

prototype	3
color:	blue

below above

Figure 3.2: Exemplary frame graph.

Figure 3.3: Exemplary scene.

Figure 3.4: Target candidates after step 1.

As an example, consider the frame graph expressible
by the noun phrase “a red horizontal object below a green
object and above a blue object” (Figure 3.2). This frame
graph specifies four constraints for the target object to be
found: (1) it should be red, (2) it should be horizontal,
(3) it should be below a green object, and (4) it should be
above a blue object.

The grounding of the red horizontal object in the scene
depicted in Figure 3.3 may proceed by first picking a set
of red candidate objects (Figure 3.4), then eliminating all
candidate objects that are not horizontal (Figure 3.5), then
eliminating all candidate objects that are not below the
green object (Figure 3.6), and then eliminating all candidate
objects that are not above the blue object (Figure 3.7).
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Figure 3.8: Exemplary grounding strategy
for the combinatorial concept from
Figure 2.3 (“a red object right of a red
object below a green diagonal object and
above a blue object”).

1 start grounding (color: green)
2 specify attribute (orientation: diagonal)
3 end grounding
4 start grounding (color: blue)
5 end grounding
6 start grounding (color: red)
7 specify reference (color: green, source: mental

map)
8 specify relation (spatial relation: below)
9 specify reference (color: blue, source: mental

map)
10 specify relation (spatial relation: above)
11 end grounding
12 start grounding (color: red)
13 specify reference (color: red, source: mental

map)
14 specify relation (spatial relation: right)
15 end grounding

3.2 Instruction set

This section describes the types of instructions that may
occur in a sequential grounding strategy. Section 6.1.2
discusses theoretical and empirical arguments that motivate
this particular choice of the instruction set.

Figure 3.5: Target candidates after step 2.

Figure 3.6: Target candidates after step 3.

Figure 3.7: Target candidates after step 4.

Each instruction in a grounding strategy specifies a
task to be performed and, if applicable, an optional set of
parameters for the task. While the instructions themselves
are abstract elements in a sequential representation, they
instruct the GSEx to perform certain tasks. The set of
instructions is not agnostic as to how the task is to be
performed. Rather, each instruction also determines how
the grounding system is supposed to perform this task.
Thus, each instruction can be characterized by a purpose,
which describes what the ultimate outcome of the task is,
and a procedure, which describes how the grounding system
is supposed to achieve the purpose. This distinction will
become clear when we consider examples.

The possible instructions are summarized in Table 3.1.
As a guiding example, we again consider the combinatorial
concept describable by the noun phrase “a red object right
of a red object below a green diagonal object and above a
blue object” (Figure 2.3). Figure 3.8 depicts an exemplary
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instruction parameters purpose procedure

start grounding attribute value a new frame should be
grounded; it has the
specified attribute value

attend to a set of objects
with the specified attribute
value and store them in
working memory as target
candidates

specify attribute attribute value the current frame has the
specified attribute value

eliminate all target
candidates that do not have
the specified attribute value

specify reference attribute value,
source

a reference to another
object with the specified
source and attribute value
should be established

attend to an object with
the specified attribute value
and store it in working
memory as a reference
object

specify relation spatial relation the current frame bears the
specified spatial relation to
the reference object

eliminate all target
candidates that do not bear
the specified relation to the
reference object

end grounding the grounding of the
current frame is complete

select a target from the
remaining target candidates

Table 3.1: Grounding strategy instructions with required parameters, purpose, and procedure.

grounding strategy for that concept.
The start grounding instruction, which is specified in con-

junction with an attribute value (a color, an orientation, or
a shape), has the purpose of starting the grounding of a
new frame with the specified attribute value. It instructs
the GSEx to attend to a set of objects with the specified at-
tribute value and to store these objects as target candidate
objects in working memory. For example, the instruction
start grounding(color: green) from Figure 3.8 (line
1) specifies that the grounding of green object should be
started, which is achieved by attending to all green ob-
jects in the perceptual array and storing them as target
candidates. All the instructions after the start grounding
instruction and before the next end grounding instruction re-
late to the same frame, which I shall refer to as the current
frame.

The specify attribute instruction, which is also specified
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3.2. INSTRUCTION SET

in conjunction with an attribute value, has the purpose of
declaring that the current frame has the specified attribute
value. It instructs the GSEx to eliminate all objects from
the set of target candidates in working memory that do
not have the specified attribute value. This instruction is
repeated for each attribute value in the frame except for
the one that was specified in conjunction with the start
grounding instruction. For example, the instruction specify
attribute (orientation: diagonal) from Figure 3.8
(line 2) specifies that the current frame has a diagonal
orientation, instructing the GSEx to eliminate all objects
that are not diagonal from the green target candidates.

The specify reference instruction, which is specified in
conjunction with an attribute value and a source, has the
purpose to establish a reference to another object with the
specified attribute value and the specified source. This
source can be either the scene (i.e., the perceptual input)
or the mental map (i.e., a memory store for objects that
have been selected as the targets of previously grounded
frames). For instance, upon grounding prototype 2 from
Figure 2.3, a reference to the object selected for proto-
type 3 has to be established. Thus, the specify reference
instruction instructs the GSEx to attend to an object with
the specified attribute value, and to store that object as a
reference object in working memory. We hypothesize that
even when the source is the mental map, this selection is
made on the basis of attribute values as opposed to, say,
a pointer to some part of memory. For example, the in-
struction specify reference (color: green, source:
mental map) from Figure 3.8 (line 9) specifies that a ref-
erence to a green object from the mental map has to be
established, which is achieved by attending to a green object
from the mental map and storing it as a reference object
in working memory. Effectively, this allows the grounding
of the current frame (frame 2) to establish a reference to
the green diagonal object selected for frame 3. Note that
since the selection is made solely based on a single attribute
value, the reference object has to be uniquely specified by
that attribute value.

The specify relation instruction always follows the specify
reference instruction and is specified in conjunction with a
relation. Its purpose is to declare that the current frame
bears the specified relation to the reference object stored
in working memory. It instructs the GSEx to eliminate all

51



CHAPTER 3. THE GROUNDING STRATEGY ENCODER

objects from the target candidates in working memory that
do not bear the specified relation to the reference object.
For instance, the instruction specify relation (spatial
relation: below) from Figure 3.8 (line 10) specifies that
the current frame bears the spatial relation below to the
previously specified reference object. This causes the GSEx
to eliminate all objects from the red target candidates that
are not below the green reference object.

The end grounding instruction has the purpose of declar-
ing that the grounding of the current frame is complete. It
instructs the GSEx to select a target object for the current
frame among the remaining target candidates in working
memory. For instance, Figure 3.8 (line 3) specifies that the
grounding of frame 3 is complete, and makes a selection
decision among the remaining green diagonal target can-
didates. Note that the remaining target candidates may
contain a single object or no object at all. In the latter
case, we say that the grounding process failed.

3.3 Underdetermination of the
grounding strategy

A given combinatorial concept does not uniquely determine
a grounding strategy. Rather, multiple grounding strategies
are possible. This is in line with the introspectively veri-
fiable truth that we have multiple ways to find an object
that matches a linguistic description, and that our attention
may be guided in different ways.

Firstly, the order in which the frames are grounded
may differ. For example, the combinatorial concept from
Figure 2.3 may be grounded starting with either the green
diagonal object or the blue object. Similarly, any given
relation may be processed either forward or backward. For
example, the grounding of “a red object below a green object”
may proceed either by first attending to a green object and
then attending to a red object below it, or by first attending
to a red object and then checking if it is below a green
object. This fact is also backed up by empirical evidence.Tanenhaus, M. K., Spivey-Knowlton, M. J.,

Eberhard, K. M., & Sedivy, J. C. (1995). In-
tegration of visual and linguistic information
in spoken language comprehension. Science,
268 (5217), 1632–1634

While the Visual World Hypothesis (VWH) put forward by
Tanenhaus et al. (1995) suggests that we attend to objects
in the order in which they are mentioned in a sentence,
the Attention Vector Sum Model (AVS) put forward by
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Regier and Carlson (2001) predicts that upon grounding Regier, T. & Carlson, L. A. (2001). Ground-
ing spatial language in perception: An empir-
ical and computational investigation. Journal
of Experimental Psychology: General, 130 (2),
273

Burigo, M. & Knoeferle, P. (2011). Vi-
sual attention during spatial language com-
prehension: Is a referential linking hypothe-
sis enough? In L. Carlson, C. H. Hölscher,
& T. Shipley (Eds.), Proceedings of the 33rd
annual conference of the cognitive science so-
ciety. Austin, TX: Cognitive Science Society

a spatial phrase like “a red object below a green object”,
attention must shift from the green reference object to the
red target object. Burigo and Knoeferle (2011) found in an
eye-tracking study that participants could flexibly employ
both strategies.

The order of instructions within any given frame may
also differ. Which of the attributes of a frame is specified
with the start grounding instruction as opposed to a specify
attribute instruction, and the order in which the attributes
of the frame are listed as specify attribute instructions, may
be chosen freely without altering the result. In line with the
VWH, the attribute mentioned first in a sentence is likely to
guide the attribute-based attentional pop-out and is there-
fore a parameter to the start grounding instruction. The
subsequently mentioned attributes are likely to guide candi-
date elimination in the order in which they are mentioned.
For instance, when the noun phrase “a green diagonal rect-
angle” is processed by a listener, attention is likely to be
initially divided between all green objects after hearing the
word “green”, subsequently narrowed down to all green diag-
onal objects after hearing the word “diagonal”, and finally
narrowed down to all green diagonal rectangular objects af-
ter hearing the word “rectangular”. Alternatively, the choice
of the order of attributes may be guided by a heuristic that
aims at eliminating as many target candidates in each step
as possible. For instance, if there is a large number of green
objects in the perceptual input, but only a small number
of diagonal objects, then it is more economic to first select
all diagonal objects and subsequently eliminate those that
are not green. It is likely that the actual order in which
candidates are eliminated depends on influences from the
order of mention, efficient search heuristics, and a certain
degree of randomness.

3.4 A note on implementation

Recall that the GSEnc receives a combinatorial concept
as input and transforms it into a sequential grounding
strategy. While no neural account of this process is given
at the present, it is easy to imagine how this process may
proceed algorithmically, namely, by performing a depth-first
search on the combinatorial concept graph. Upon visiting
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each frame in that search, the attributes and relations in
that frame are then merely iterated and transformed into
instructions. While this process is easy to implement as a
computer program, a neural account for how such a depth-
first search or an equivalent procedure may be performed
requires careful consideration and thus comprises a future
research direction.
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The Grounding Strategy Executor 4

This chapter introduces the proposed architecture for the
Grounding Strategy Executor (GSEx). Given a sequential
grounding strategy for a combinatorial concept, the archi-
tecture is able to execute that grounding strategy and thus,
effectively, to ground the combinatorial concept.

The architecture is depicted in Figure 4.1. It constitutes
a single dynamical system, which consists of different com-
ponents (i.e., nodes and fields), each of which is specified
by a differential equation that is coupled to the differential
equations of other components. The components of the
architecture, along with their activation variables and a
summary of the purpose, are listed in Table 4.1. The fol-
lowing sections describe the components in more detail and
specify the differential equations that guide their activation.

Due to recurrent interactions among components, each
component can only be understood in the context of the
other components. However, a description of the compo-
nents can only be given one component at a time. This is
why the description of some of the components may need
to refer to components that are introduced in later sections.
In order to gain an understanding of the overall architec-
ture, I therefore recommend to continually refer back to
Figure 4.1 and Table 4.1. Moreover, when a component is
introduced that has been referenced in previous dynamics,
I recommend to go back to the previous dynamics. For
this purpose, I recommend to use the digital version of this
thesis, since it allows to click on the component names to
jump to the section where they are defined.
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Figure 4.1: Overview of the architecture for the grounding of combinatorial concepts. Notational conventions are
defined in the upper right.
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name variable purpose

perception

color/space perception field uCSPF(x, y, c, t) object representation over color
and space

orientation/space perception field uOSPF(x, y, φ, t) object representation over orienta-
tion and space

shape/space perception field uSSPF(x, y, χ, t) object representation over shape
and space

attention

color attention field uCAF(c, t) attention to color values
orientation attention field uOAF(φ, t) attention to orientation values
shape attention field uSHAF(χ, t) attention to shape categories
spatial attention field uSAF(x, y, t) attention to spatial locations
color/space attention field uCSAF(x, y, c, t) attention to spatial locations and

colors
orientation/space attention field uOSAF(x, y, φ, t) attention to spatial locations and

orientations
shape/space attention field uSSAF(x, y, χ, t) attention to spatial locations and

shapes

gating

from mental map node uFMMN(t) when inactive, attention is guided
to perceptual input; when active,
attention is guided to mental map

color/space perception gating field uCSPGF(x, y, c, t) gate input from the color/space
perception field to the color/space
attention field

color/space mental map gating field uCSMMGF(x, y, c, t) gate input from the color/space
mental map to the color/space at-
tention field

orientation/space perception gating
field

uOSPGF(x, y, φ, t) gate input from the orientation/s-
pace perception field to the orien-
tation/space attention field
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orientation/space mental map gating
field

uOSMMGF(x, y, φ, t) gate input from the orientation/s-
pace mental map to the orienta-
tion/space attention field

shape/space perception gating field uSSPGF(x, y, χ, t) gate input from the shape/space
perception field to the shape/s-
pace attention field

shape/space mental map gating field uSSMMGF(x, y, χ, t) gate input from the shape/space
mental map to the shape/space
attention field

atomic concepts

color concept nodes uR
CCN(t), uG

CCN(t),
uB

CCN(t), uY
CCN(t)

when active, color attention is
guided to respective hue

orientation concept nodes uH
OCN(t), uD

OCN(t),
uV

OCN(t)
when active, orientation attention
is guided to respective angle

shape concept nodes uR
SCN(t), uS

SCN(t),
uE

SCN(t), uC
SCN(t),

uT
SCN(t)

when active, shape attention is
guided to respective shape

spatial relation concept nodes uL
SRCN(t), uR

SRCN(t),
uA

SRCN(t), uB
SRCN(t)

when active, a pattern for the
respective spatial relation is pro-
jected into the spatial relation
field

grounding strategy representation

ordinal nodes uiORD(t) when active, the i-th instruction
is processed

memory nodes uiMEM(t) when active, the i-th instruction
was processed

processes

start grounding process intention
node

uSGI(t) when active, the start grounding
process will be performed

start grounding process CoS node uSGC(t) when active, the start grounding
process has just finished

specify attribute process intention
node

uSAI(t) when active, the specify attribute
process will be performed

specify attribute process CoS node uSAC(t) when active, the specify attribute
process has just finished
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specify reference process intention
node

uSRI(t) when active, the specify reference
process will be performed

specify reference process CoS node uSRC(t) when active, the specify reference
process has just finished

specify relation process intention node uSRLI(t) when active, the specify relation
process will be performed

specify relation process CoS node uSRLC(t) when active, the specify relation
process has just finished

end grounding process intention node uEGI(t) when active, the end grounding
process will be performed

end grounding process CoS node uEGC(t) when active, the end grounding
process has just finished

proceed process intention node uPI(t) when active, the next ordinal node
in the sequence will become active

eliminate target candidates process
intention node

uETCI(t) when active, target candidates are
eliminated

eliminate target candidates process
CoS node

uETCC(t) when active, target candidates
have been eliminated

target candidate elimination and selection

target candidates field uTCF(x, y, t) hold spatial positions of target
candidates

comparison field uCF(x, y, t) hold peaks at positions of target
candidates that are currently at-
tended to

target selection field uTSF(x, y, t) select a target from remaining tar-
get candidates

mental map

color/space mental map uCSMM(x, y, c, t) remember colors and positions of
grounded objects

orientation/space mental map uOSMM(x, y, φ, t) remember orientations and posi-
tions of grounded objects

shape/space mental map uSSMM(x, y, χ, t) remember shapes and positions of
grounded objects

apprehending relations
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reference field uRF(x, y, t) position of a previously grounded
reference object

spatial relation field uSRF(x, y, t) position of target candidates rela-
tive to reference object

backtracking

inhibition of return field uIORF(x, y, t) remember locations of objects that
have been selected as targets

no target candidates node uNTCN(t) when active, no target candidates
for current frame remain

Table 4.1: Overview of the components (fields and nodes) of the architecture. Each row gives the name, dynamic
activation variable (including the dimensions over which the component is defined) and a description of the purpose.
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4.1. PERCEPTION

4.1 Perception

The perceptual system receives sensory input from an image
or a camera and builds a representation of that input in
terms of its features. In doing so, it draws upon the idea of
binding through space, according to which the various fea-
tures of an object are bound together via spatial dimensions
that are shared across feature maps (Treisman & Gelade, Treisman, A. M. & Gelade, G. (1980). A

feature-integration theory of attention. Cog-
nitive Psychology, 12 (1), 97–136

Schneegans, S., Spencer, J., & Schöner, G.
(2015). Integrating “what” and “where”: Vi-
sual working memory for objects in a scene.
In G. Schöner & J. Spencer (Eds.), Dynamic
thinking: A primer on dynamic field theory.
New York, NY: Oxford University Press

1980; Schneegans et al., 2015). Thus, the perceptual sys-
tem consists of three fields, the color/space perception field,
the orientation/space perception field, and the shape/space
perception field.

4.1.1 Color/space perception

The color/space perception field is defined over two spa-
tial dimensions, x, y, and a color dimension c. It can be
regarded as capturing the population activation of color-
and-space-selective neurons. In our architecture, we re-
main uncommitted as to the spatial reference frame of that
representation (retinal, head-centered, body-centered, or
allocentric). Thus, the field can be taken to reflect the
activity of early visual cortex populations or parietal lobe
populations.

Figure 4.2: Exemplary perceptual input.

x

y

c

0°

90°

180°

Figure 4.3: Activation slices of the
color/space perception field in response to
the perceptual input from Figure 4.2.

As a placeholder for a neurally realistic model of visual
processing, the input to that field is computed through
algorithmic preprocessing of the image: The image is con-
verted to HSV color space, and then converted into a tensor
of order 3, defined over spatial location x, y and color c,
whose entries scale with the saturation of the objects at
the respective locations. This tensor serves as input to the
color/space perception field, which is tuned in such a way
that sufficiently saturated objects create peaks whose size
roughly corresponds to the size of the objects. The activa-
tion of those peaks scales with their saturation, capturing
bottom-up attention effects.

The activation uCSPF of the color/space perception field
evolves in time t based on the differential equation

τ u̇CSPF(x, y, c, t) =− uCSPF(x, y, c, t) + h

+ [kCSPF,CSPF ∗ g(uCSPF)](x, y, c, t)

+ [kCSPF,C ∗ sC](x, y, c, t).

(4.1)
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The first two lines correspond to the generic DNF equation.
The third line formalizes the input from the algorithmic
preprocessing, which is convolved with a kernel kCSPF,C.

Figure 4.3 depicts activation slices of the field for the
perceptual input from Figure 4.2.

4.1.2 Orientation/space perception

The orientation/space perception field is defined over two
spatial dimensions x, y and an orientation angle dimension φ.
It can be regarded as capturing the population activation
of orientation-and-space-selective neurons, which are to
be found, e.g., in visual area V1 or in the parietal lobe,
depending on the reference frame.

To compute the input to the orientation/space perception
field, the image is converted into HSV color space and the
saturation channel is extracted to serve as an intensity
profile, formalized as a function I(x, y). The intensity
profile is then convolved with filters F θ

Ori(x, y) for θ ∈ Θ =
{0◦, 45◦, 90◦, 135◦}, effectively resulting in a set of intensity
distributions for each orientation in Θ.

Figure 4.4: Orientation filter F 0◦
Ori(x, y).

Figure 4.5: Orientation filter F 45◦
Ori (x, y).

Figure 4.6: Orientation filter F 90◦
Ori (x, y).

We model the filters F θ
Ori(x, y) as a difference of two

elliptical Gaussians (Figures 4.4 to 4.6),

F θ
Ori(x, y) = a · exp(−(pθ(x− x0)2

+ 2qθ(x− x0)(y − y0)

+ rθ(y − y0)2))

− b · exp(−(p′θ(x− x0)2

+ 2q′θ(x− x0)(y − y0)

+ r′θ(y − y0)2)),

(4.2)

pθ =
cos2(θ)

2σ2
x

+
sin2(θ)

2σ2
y

,

qθ =
sin(2θ)

4σ2
x

+
sin(2θ)

4σ2
y

,

rθ =
sin2(θ)

2σ2
x

+
cos2(θ)

2σ2
y

,

p′θ =
cos2(θ)

2σ′2x
+
sin2(θ)

2σ′2y
,

q′θ =
sin(2θ)

4σ′2x
+
sin(2θ)

4σ′2y
,
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r′θ =
sin2(θ)

2σ′2x
+
cos2(θ)

2σ′2y
,

a > b > 0, σx < σ′x, σy < σ′y, σx > σy, σ
′
x > σ′y.

These filter profiles exhibit an excitatory center and an in- Hubel, D. H. & Wiesel, T. N. (1959). Re-
ceptive fields of single neurones in the cat’s
striate cortex. The Journal of Physiology,
148 (3), 574–591

Figure 4.7: Convolution result for θ = 0◦.

Figure 4.8: Convolution result for θ = 45◦.

Figure 4.9: Convolution result for θ = 90◦.

hibitory surround, in line with findings regarding the center-
surround receptive-field profile of orientation-selective neu-
rons in the cortex (e.g., the simple cells found in visual area
V1; Hubel & Wiesel, 1959).

Figures 4.7 to 4.9 depict exemplary convolution results
for the perceptual input from Figure 4.2. The convolution
results [F φ

Ori ∗ I](x, y) project into the respective regions of
the orientation/space perception field, which is tuned in such
a way that objects of sufficient intensity create stable peaks
of activation whose size roughly corresponds to the size
of the object. Formally, the input to the orientation/space
perception field is thus given as

sO(x, y, φ, t) =

{
[F φ

Ori ∗ I](x, y) if φ ∈ Θ

0 otherwise.
(4.3)

Note that the nervous system cannot directly convolve a
perceptual representation with a filter, since this would re-
quire synaptic weight sharing among neurons with different
receptive fields. Instead, for each filter, multiple neurons
responsive to that filter exist, each with a different receptive
field. The result of the convolution operation, sO, should
just be taken to reflect the population activation of the set
of all neurons that are responsive to the filter in any given
receptive field.

x

y

0°

90°

180°

Figure 4.10: Activation slices of the
orientation/space perception field in
response to the perceptual input from
Figure 4.2.

The activation uOSPF of the orientation/space perception
field evolves in time t based on the differential equation

τ u̇OSPF(x, y, φ, t) =− uOSPF(x, y, φ, t) + h

+ [kOSPF,OSPF ∗ g(uOSPF)](x, y, φ, t)

+ [kOSPF,O ∗ sO](x, y, φ, t).

(4.4)

The first two lines correspond to the generic DNF equation.
The third line formalizes a convolution of the input sO with
a kernel kOSPF.

Figure 4.10 depicts activation slices of the field for the
perceptual input from Figure 4.2.
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4.1.3 Shape/space perception

The shape/space perception field is defined over two spatial
dimensions x, y and a categorical shape dimension χ. It canNandy, A. S., Sharpee, T. O., Reynolds, J. H.,

& Mitchell, J. F. (2013). The fine structure
of shape tuning in area V4. Neuron, 78 (6),
1102–1115

Murata, A., Gallese, V., Luppino, G.,
Kaseda, M., & Sakata, H. (2000). Selectivity
for the shape, size, and orientation of objects
for grasping in neurons of monkey parietal
area AIP. Journal of Neurophysiology, 83 (5),
2580–2601

be regarded as capturing the population activation of shape-
and-space-selective neurons, which are to be found, e.g., in
visual area V4 (Nandy et al., 2013) or in the parietal lobe
(Murata et al., 2000), depending on the reference frame.

Shape patterns are encoded as filters F χ
Shape(x, y) for

χ ∈= {R,S,E,C,T} denoting, respectively, a rectangle,
square, ellipse, circle and triangle filter pattern (see Fig-
ures 4.11 to 4.15). These shape patterns feature an excita-
tory center and an inhibitory surround.

Figure 4.11: Rectangle filter.

Figure 4.12: Square filter.

Figure 4.13: Ellipse filter.

Figure 4.14: Circle filter.

Figure 4.15: Triangle filter.

To compute the input to the shape/space perception
field, we again take the intensity profile I(x, y) from the
saturation channel of the image in HSV color space and
convolve it with rotated versions F χ

Shape(x, y) at angles
θ ∈ Θ = {0◦, 45◦, 90◦, 135◦}. The results of all the con-
volutions for any given shape χ are max-pooled across
rotation angles, effectively resulting in a set of intensity
distributions for each shape χ that is invariant to rota-
tion. These then project into the respective regions of the
shape/space perception field, which is tuned in such a way
that objects of sufficient intensity create stable peaks of
activation whose size roughly corresponds to the size of the
object.

Formally, the input to the shape/space perception field
is thus given as

sSH(x, y, χ, t) = max
θ∈Θ

∫ ∫
g(I(x, y))F χ

Shape(

(x− x′)cos(θ)− (y − y′)sin(θ),

(x− x′)sin(θ) + (y − y′)cos(θ)
) dx′dy′,

(4.5)

which is the maximum filter response across rotations of
the filter.

Again, neither the convolution operation nor the ro-
tation operation should be taken to be neural operations.
Instead, we assume that for each filter, multiple neurons
responsive to that filter exist, each with a different receptive
field and rotation angle.

The activation uSSPF of the shape/space perception field
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evolves in time t based on the differential equation

τ u̇SSPF(x, y, χ, t) =− uSSPF(x, y, χ, t) + h

+

∫ ∫
g(uSSPF(x′, y′, χ, t))

kSSPF,SSPF(x− x′, y − y′)dx′dy′

+

∫ ∫
g(sSH(x′, y′, χ, t))

kSSPF,SH(x− x′, y − y′)dx′dy′.

(4.6)

The first three lines correspond to the generic DNF equation.
Since the shape dimension χ is a categorical dimension, lat-
eral interactions only pertain to the two spatial dimensions
x and y. The fourth and fifth line formalize a convolu-
tion of the input sSH with a kernel kSSPH,SH, formalizing a
point spread that again only pertains to the two spatial
dimensions x and y.

Figure 4.17 depicts activation slices of the field for the
perceptual input from Figure 4.16.

Figure 4.16: Exemplary perceptual input.

x

y

rectangle

square

ellipse

circle

triangle

Figure 4.17: Activation slices of the
shape/space perception field in response to
the perceptual input from Figure 4.16.

4.2 Attention

The attentional system consists of seven fields. Three one-
dimensional attribute attention fields, the color attention
field, the orientation attention field, and the shape atten-
tion field, model attention to attribute values. A two-
dimensional spatial attention field models attention to spa-
tial locations. The attribute attention fields and the spatial
attention field are coupled via three-dimensional attribute/s-
pace attention fields, the color/space attention field, the
orientation/space attention field and the shape/space atten-
tion field.

4.2.1 Attribute attention

Attribute attention fields model attention to metric at-
tribute values like colors or orientations. A peak in such a
field reflects the fact that the respective attribute value or
range of attribute values is presently being attended to.

The color attention field is defined over the cyclical hue
dimension c ∈ [0, 360◦). Its activation uCAF follows the
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differential equation

τ u̇CAF(c, t) =− uCAF(c, t) + h

+ [kCAF,CAF ∗ g(uCAF)](c, t)

+
∑

C∈{R,G,B,Y}

WC
Col(c) · g(uCCCN(t))

(4.7)

The first two lines correspond to the generic DNF equa-
tion. The third line formalizes input from a set of color
concept nodes5 representing discrete color concepts, whose5 see Section 4.3.1

meaning is encoded by the synaptic connection weights
WC

Col
6. Upon activation of these nodes, peaks form in the6 see Equation 4.22

appropriate region of the color attention field, bringing the
colors represented by those nodes into attentional focus.

The orientation attention field is defined over the cyclical
orientation angle dimension φ ∈ [0, 360◦). Its activation
follows the differential equation

τ u̇OAF(φ, t) =− uOAF(φ, t) + h

+ [kOAF,OAF ∗ g(uOAF)](φ, t)

+
∑

O∈{H, D, V}

WO
Ori(φ) · g(uOOCN(t))

(4.8)

The first two lines correspond to the generic DNF equation.
Analogously as before, the third line formalizes input from
a set of orientation nodes7 representing discrete orientation7 see Section 4.3.2

concepts, whose meaning is encoded by the synaptic connec-
tion weights WO

Ori
8. Again, upon activation of these nodes,8 see Equation 4.24

peaks form in the appropriate region of the orientation at-
tention field, bringing the orientations represented by those
nodes into attentional focus.

Since shape is a categorical attribute dimension, the
shape attention field is defined over the discrete shape dimen-
sion χ ∈ {R, S,E,C, T} denoting, respectively, a rectangle,
square, ellipse, circle or triangle shape. Its activation uSHAF

follows the differential equation

τ u̇SHAF(χ, t) =− uSHAF(χ, t) + h

+ wSHAF,SHAFg(uSHAF(χ, t))

+ wSHAF,SCN · g(uχSCN(t))

(4.9)

The first two lines correspond to the generic DNF equation.
Since shape is a discrete dimension, there are no lateral
interactions between different shape values. Instead, there is
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self-excitation of each shape value with strength wSHAF,SHAF.
The third line formalizes input from the respective shape
concept node9. 9 see Section 4.3.3

4.2.2 Spatial attention

The spatial attention field is defined over the two spatial
dimensions x and y. A peak in this field reflects the fact
that a certain spatial location is presently being attended
to. Its activation uSAF follows the differential equation

τ u̇SAF(x, y, t) =− uSAF(x, y, t) + h

+ [kSAF,SAF ∗ g(uSAF)](x, y, t)

+ max
c

([kSAF,CSAF ∗ g(uCSAF)](x, y, c, t))

+ max
φ

([kSAF,OSAF ∗ g(uOSAF)](x, y, φ, t))

+ max
χ

([kSAF,SSAF ∗ g(uSSAF)](x, y, χ, t))

+ sSAF,SRF(x, y, t).

(4.10)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the color/space attention
field10, which is contracted along the hue dimension, c. 10 see Section 4.2.3

The fourth line formalizes input from the orientation/space
attention field, which is contracted along the orientation
dimension, φ. The fifth line formalizes input from the
shape/space attention field, which is contracted along the
shape dimension, χ. The last line formalizes input from the
spatial relation field, which is transformed into an allocentric
coordinate system as described in Section 4.9.

4.2.3 Attribute/space attention

The attribute/space attention fields are defined over the
two spatial dimensions x and y and an additional attribute
dimension – color c in the case of the color/space atten-
tion field, orientation φ in the case of the orientation/space
attention field, and shape category χ in the case of the
shape/space attention field. Peaks in these fields reflect the
fact that an object with a certain attribute value at a cer-
tain spatial location is presently being attended to. This
way, they serve to couple the attribute attention fields with
the spatial attention field.
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4.2.3.1 Color/space attention

The color/space attention field is defined over the same di-
mensions as the color/space perception field, namely, spatial
location x, y and color c. Peaks in that field reflect the fact
that an object of a certain color at a certain spatial location
is currently being attended to. It receives input from the
color attention field via an expansion coupling along the
shared hue dimension, resulting in a subthreshold ridge of
activity when a color is attended to.

Depending on the state of activation of a from mental
map node11, it receives additional input from either the11 see below

color/space perception field (reflecting objects from the per-
ceptual array) or the color/space mental map12 (reflecting12 see Section 4.8

previously grounded objects stored in memory). This input
is too weak to form peaks in the field and thus results in
subthreshold bumps of activity (Figure 4.18). When these
subthreshold bumps coincide with ridge input from the color
attention field, the color/space attention field forms peaks at
the appropriate spatial locations and color (Figure 4.19).
This way, by attending to a color, objects of that color can
be brought into the attentional foreground. These objects
can be from the perceptual array (when the from mental
map node is inactive) or from the mental map (when the
from mental map node is active).

x

y

c

0°

90°

180°

Figure 4.18: Activation slices of the
color/space attention field in response to
the perceptual input from Figure 4.2.

x

y

c

0°

90°

180°

Figure 4.19: Activation slices of the
color/space attention field in response to
the perceptual input from Figure 4.2 when
the red color concept node is active.

The activation uFMMN of the from mental map node
follows the differential equation

τ u̇FMMN(t) =− uFMMN(t) + h+ sFMMN(t)

+ wFMMN,FMMN · g(uFMMN(t)),
(4.11)

which is the generic DNN equation.
To model the fact that the color/space attention field may

receive input from either the color/space perception field or
the color/space mental map depending on the activation of
the from mental map node, two gating fields are introduced.
The color/space perception gating field yields output that
roughly corresponds to the output of the color/space per-
ception field whenever the from mental map node is inactive,
and no output otherwise. Conversely, the color/space mental
map gating field yields output that roughly corresponds to
the output of the color/space mental map whenever the from
mental map node is active, and no output otherwise.

The activation uCSPGF of the color/space perception gat-
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ing field follows the differential equation

τ u̇CSPGF(x, y, c, t) =− uCSPGF(x, y, c, t) + h

+ [kCSPGF,CSPGF ∗ g(uCSPGF)](x, y, c, t)

+ [kCSPGF,CSPF ∗ g(uCSPF)](x, y, c, t)

− wCSPGF,FMMN · g(uFMMN(t)).

(4.12)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the color/space percep-
tion field. The fourth line formalizes global inhibitory input
from the from mental map node. The parameters are tuned
such that when the from mental map node is active, the
gating field yields no output, whereas when the from mental
map node is inactive, the output of the gating field roughly
corresponds to the output from the color/space perception
field.

The activation uCSMMGF of the color/space mental map
gating field follows the differential equation

τ u̇CSMMGF(x, y, c, t) =− uCSMMGF(x, y, c, t) + h

+ [kCSMMGF,CSMMGF ∗ g(uCSMMGF)](x, y, c, t)

+ [kCSMMGF,CSMM ∗ g(uCSMM)](x, y, c, t)

+ wCSMMGF,FMMN · g(uFMMN(t)).

(4.13)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the color/space mental
map13. The fourth line formalizes global excitatory input 13 see Section 4.8

from the from mental map node. The parameters are tuned
such that when the from mental map node is inactive, the
gating field yields no output, whereas when the from mental
map node is active, the output of the gating field roughly
corresponds to the output from the color/space mental map.

Finally, the activation uCSAF of the color/space attention
field follows the differential equation

τ u̇CSAF(x, y, c, t) =− uCSAF(x, y, c, t) + h

+ [kCSAF,CSAF ∗ g(uCSAF)](x, y, c, t)

+ [kCSAF,CSPGF ∗ g(uCSPGF)](x, y, c, t)

+ [kCSAF,CSMMGF ∗ g(uCSMMGF)](x, y, c, t)

+ [kCSAF,CAF ∗ g(uCAF)](c, t).

(4.14)
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The first two lines correspond to the generic DNF equation.
The third line formalizes input from the color/space percep-
tion gating field. The fourth line formalizes input from the
color/space mental map gating field. The last line formalizes
input from the color attention field, which undergoes an
expansion coupling along the shared hue dimension, c.

4.2.3.2 Orientation/space attention

The orientation/space attention field implements an analo-
gous mechanism for the orientation attribute. It is defined
over the same dimensions as the orientation/space perception
field, namely, spatial location x, y and orientation φ. Peaks
in that field reflect the fact that an object of a certain
orientation at a certain spatial location is currently being
attended to.

Again, two gating fields are introduced. The orientation/space
perception gating field yields output that roughly corre-
sponds to the output of the orientation/space perception
field whenever the from mental map node is inactive, and
no output otherwise. Its activation uOSPGF follows the
differential equation

τ u̇OSPGF(x, y, φ, t) =− uOSPGF(x, y, φ, t) + h

+ [kOSPGF,OSPGF ∗ g(uOSPGF)](x, y, φ, t)

+ [kOSPGF,OSPF ∗ g(uOSPF)](x, y, φ, t)

− wOSPGF,FMMN · g(uFMMN(t)).

(4.15)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the orientation/space
perception field. The fourth line formalizes global inhibitory
input from the from mental map node.

The orientation/space mental map gating field yields
output that roughly corresponds to the output of the
orientation/space mental map whenever the from mental
map node is active, and no output otherwise. Its activation
uOSMMGF follows the differential equation

τ u̇OSMMGF(x, y, φ, t) =− uOSMMGF(x, y, φ, t) + h

+ [kOSMMGF,OSMMGF ∗ g(uOSMMGF)](x, y, φ, t)

+ [kOSMMGF,OSMM ∗ g(uOSMM)](x, y, φ, t)

+ wOSMMGF,FMMN · g(uFMMN(t)).

(4.16)
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The first two lines correspond to the generic DNF equation.
The third line formalizes input from the orientation/space
mental map14. The fourth line formalizes global excitatory 14 see Section 4.8

input from the from mental map node.
The activation uOSAF of the orientation/space attention

field follows the differential equation

τ u̇OSAF(x, y, φ, t) =− uOSAF(x, y, φ, t) + h

+ [kOSAF,OSAF ∗ g(uOSAF)](x, y, φ, t)

+ [kOSAF,OSPGF ∗ g(uOSPGF)](x, y, φ, t)

+ [kOSAF,OSMMGF ∗ g(uOSMMGF)](x, y, φ, t)

+ [kOSAF,OAF ∗ g(uOAF)](φ, t).

(4.17)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the orientation/space
perception gating field. The fourth line formalizes input
from the orientation/space mental map gating field. The last
line formalizes input from the orientation attention field.

4.2.3.3 Shape/space attention

The shape/space attention field is defined over the same
dimensions as the shape/space perception field, namely, spa-
tial location x, y and shape category χ. Peaks in that field
reflect the fact that an object of a certain shape at a certain
spatial location is currently being attended to.

One more time, two gating fields implement a gat-
ing mechanism. The shape/space perception gating field
yields output that roughly corresponds to the output of the
shape/space perception field whenever the from mental map
node is inactive, and no output otherwise. Its activation
uSSPGF follows the differential equation

τ u̇SSPGF(x, y, χ, t) =− uSSPGF(x, y, χ, t) + h

+

∫ ∫
g(uSSPGF(x′, y′, χ, t))

kSSPGF,SSPGF(x− x′, y − y′)dx′dy′

+

∫ ∫
g(uSSPF(x′, y′, χ, t))

kSSPGF,SSPF(x− x′, y − y′)dx′dy′

− wSSPGF,FMMN · g(uFMMN(t)).

(4.18)
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The first three lines correspond to the generic DNF
equation. The fourth and fifth line formalize input from
the shape/space perception field. The sixth line formalizes
global inhibitory input from the from mental map node.

The shape/space mental map gating field yields output
that roughly corresponds to the output of the shape/space
mental map whenever the from mental map node is active,
and no output otherwise. Its activation uSSMMGF follows
the differential equation

τ u̇SSMMGF(x, y, χ, t) =− uSSMMGF(x, y, χ, t) + h

+

∫ ∫
g(uSSMMGF(x′, y′, χ, t))

kSSMMGF,SSMMGF(x− x′, y − y′)dx′dy′

+

∫ ∫
g(uSSMM(x′, y′, χ, t))

kSSMMGF,SSMM(x− x′, y − y′)dx′dy′

+ wSSMMGF,FMMN · g(uFMMN(t)).

(4.19)

The first three lines correspond to the generic DNF equa-
tion. The fourth and fifth line formalize input from the
shape/space mental map15. The sixth line formalizes global15 see Section 4.8

excitatory input from the from mental map node.
The activation uSSAF of the shape/space attention field

follows the differential equation

τ u̇SSAF(x, y, χ, t) =− uSSAF(x, y, χ, t) + h

+

∫ ∫
g(uSSAF(x′, y′, χ, t))

kSSAF,SSAF(x− x′, y − y′)dx′dy′

+

∫ ∫
g(uSSPGF(x′, y′, χ, t))

kSSAF,SSPGF(x− x′, y − y′)dx′dy′

+

∫ ∫
g(uSSMMGF(x′, y′, χ, t))

kSSAF,SSMMGF(x− x′, y − y′)dx′dy′

+ wSSAF,SHAF · g(uSHAF(χ, t)).

(4.20)

The first three lines correspond to the generic DNF equa-
tion. The fourth and fifth line formalize input from the
shape/space perception gating field. The sixth and seventh
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line formalize input from the shape/space mental map gating
field. The last line formalizes input from the shape atten-
tion field, which undergoes an expansion coupling along the
shared shape dimension, χ.

4.3 Atomic concepts

Following the general DFT mechanism for modeling atomic
concepts described in Section 2.6.1, atomic concepts are
implemented in the form of neural nodes and their patterned
connections to attribute fields or relation fields.

4.3.1 Color concepts

Color concepts are modeled as a set of color concept nodes
and their synaptic connections with the color attention
field. Thus, upon activating these nodes, peaks form in the
appropriate region of the color attention field. For example,
activating the red color concept node causes a peak to form
in a region of the color attention field which spans the range
of red hue values.

The activation variables of the color concept nodes are
named uCCCN with an index C ∈ {R, G, B, Y} denoting,
respectively, the red, green, blue and yellow color concept
nodes. They are governed by the differential equation

τ u̇CCCN(t) = −uCCCN(t) + h+ sCCCN(t) + wCCN,CCN · g(uCCCN(t)),

(4.21)

which is the generic DNN equation.
The synaptic weight pattern WC

Col between the color
concept node C and the color attention field16 corresponds 16 see Equation 4.7

to a Gaussian centered on a prototypical hue value for the
color category C,

WC
Col(c) = exp

(
−(c− µCCol)

2

2σCCol
2

)
,

µR
Col = 0◦, σR

Col = 5.04,

µG
Col = 120◦, σG

Col = 4.8,

µB
Col = 240◦, σB

Col = 10.08,

µY
Col = 60◦, σY

Col = 3.

(4.22)
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4.3.2 Orientation concepts

Orientation concepts are modeled as a set of orientation
concept nodes and their synaptic connections with the
orientation attention field. The activation variables of the
orientation concept nodes are named uOOCN with an index
O ∈ {H, D, V} denoting, respectively, the horizontal, di-
agonal, and vertical orientation concept nodes. They are
governed by the differential equation

τ u̇OOCN(t) = −uOOCN(t) + h+ sOOCN(t) + wOCN,OCN · g(uOOCN(t)),

(4.23)

which is the generic DNN equation.
The synaptic weight patterns WO

Ori between the orien-
tation concept nodes and the orientation attention field1717 see Equation 4.8

correspond to Gaussians centered on a prototypical angle,

WO
Ori(φ) = exp

(
−(φ− µOOri)

2

2σOOri
2

)
,

µH
Ori = 0◦, σH

Ori = 6.75,

µD
Ori = 45◦, σD

Ori = 6.75,

µV
Ori = 90◦, σV

Ori = 6.75.

(4.24)

4.3.3 Shape concepts

Shape concepts are modeled as a set of shape concept nodes
and their synaptic connections with the shape attention field.
The activation variables of the shape concept nodes are
named uχSCN with an index χ ∈ {R, S, E, C, T} denoting,
respectively, the rectangle, square, ellipse, circle or triangle
shape concept nodes. They are governed by the differential
equation

τ u̇χSCN(t) = −uχSCN(t) + h+ sχSCN(t) + wSCN,SCN · g(uχSCN(t)),
(4.25)

which is the generic DNN equation.
Since shape concept nodes simply excite the shape atten-

tion field at the respective value of χ18, no synaptic weight18 see Equation 4.9

patterns are necessary.

4.3.4 Spatial relation concepts

Spatial relation concepts are modeled as a set of spatial
relation concept nodes and their synaptic connections with
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the spatial relation field19. The activation variables of these 19 see Section 4.9

nodes are called uSSRCN with an index S ∈ {L, R, A, B}
denoting, respectively, the left, right, above and below
spatial relation concept nodes. They are governed by the
differential equation

τ u̇SSRCN(t) =− uSSRCN(t) + h+ sSSRCN(t)

+ wSRCN,SRCN · g(uSSRCN(t)),
(4.26)

which is the generic DNN equation.
Consistent with how humans represent spatial relations

(Logan & Sadler, 1996), the synaptic weight pattern W S
Spat Logan, G. D. & Sadler, D. D. (1996). A

computational analysis of the apprehension
of spatial relations. In P. Bloom, M. Peter-
son, L. Nadel, & M. Garrett (Eds.), Language
and Space (Chap. 13). Cambridge, MA: MIT
Press

Figure 4.20: Spatial pattern WL
Spat.

Figure 4.21: Spatial pattern WR
Spat.

Figure 4.22: Spatial pattern WA
Spat.

Figure 4.23: Spatial pattern WB
Spat.

between the spatial relation concept nodes and the spatial
relation field is modeled as a Gaussian centered on the angle
of the direction of that relation (Figures 4.20 to 4.23),

W S
Spat(x, y) =a · exp(

−
(arctan2(y, x)− µSSpat)

2

2σSSpat
2

−(
√
x2 + y2 − µr)2

2σ2
r

),

µL
Spat = 180◦,

µR
Spat = 0◦,

µA
Spat = 90◦,

µB
Spat = 270◦.

(4.27)

4.4 Grounding strategy
representation

Recall that the GSEnc transforms a to-be-grounded combi-
natorial concept into a sequence of instructions that have
to be performed in order to ground it. The sequence of
instructions then serves as input to the GSEx, which has
the task of executing it. This picture is reminiscent of mes-
sage passing between computer algorithms: One algorithm
(the GSEnc) calls another algorithm (the GSEx) with a
data structure that comprises a list of instructions. How-
ever, since the GSEnc and the GSEx are neural systems
as opposed to computer algorithms, the representation of
the list of instructions and the message passing have to be
explained in neural terms.
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We assume that the grounding strategy is encoded by
means of a positional serial order mechanism as described in
Section 2.9.8, i.e., by a set of ordinal nodes that get activated
in sequence. Each ordinal node encodes one instruction by
virtue of the nodes that it triggers. For instance, the in-
struction start grounding (color: green) is encoded
by the fact that its ordinal node is connected to a start
grounding process20 intention node as well as the green color20 see Section 4.5

concept node. Thus, upon activation of each ordinal node,
an associated process intention node and an optional set of
parameter nodes gets activated.

As of now, we do not commit to a neural mechanism
that establishes the connections between the ordinal nodes
and the appropriate process and parameter nodes. Two
conceivable alternatives come to mind. First, these con-
nections could correspond to actual synaptic connections.
This would require that the GSEnc somehow entrains these
connections through fast plasticity. Second, these connec-
tions could be mediated by a set of gating neurons Gp,i,
one for each pair of ordinal node i and process intention or
parameter node p. The grounding strategy sequence could
then be encoded by means of an activity pattern over these
nodes, such that Gp,i is active if and only if ordinal node i
should trigger the activation of node p. Gp,i then acts as a
gating mechanism for propagating excitation from ordinal
node i to node p.

The activation of the ordinal nodes follows Equation 2.24.
The activation uiMEM of the ith memory node follows the
equation

τ u̇iMEM(t) = −uiMEM(t) + h

+ wMEM,MEM · g(uiMEM(t))

+ wMEM,ORD · g(uiORD(t))

− wMEM,NTC · g(uNTC(t)).

(4.28)

The first 3 lines correspond to the generic memory node
equation (Equation 2.25). The last line formalizes inhibitory
input from the no target candidates node21. As we shall21 see Section 4.10

see, this allows the grounding process to go back to the
beginning when no target candidates could be found.
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4.5 Processes
Process organization is implemented based on the principles
described in Section 2.9.7. Each process is implemented
via two neural nodes: An intention node (labeled “i” in Fig-
ure 4.1) represents whether the process is currently active
and able to exert an influence on other parts of the archi-
tecture. A CoS node (labeled “c”) gets activated when the
process has successfully finished and inhibits the intention
node. In the following, we state the names, functions, and
dynamics of these processes. The couplings between these
nodes with other components of the architecture, as ap-
parent from the equations of the previous and upcoming
sections, make it clear how they actually achieve their func-
tion.

4.5.1 Processes for instructions

There is one process for each of the instructions specified in
Section 3.2. The activation variables of the intention nodes
of these processes are called uP I with an index

P ∈ {SG, SA, SR, SRL, EG}

denoting, respectively, the start grounding process, specify
attribute process, specify reference process, specify relation
process and end grounding process. They follow the generic
intention node equation (Equation 2.22). The input to
these intention nodes is given by

sP I(t) =
∑
i

wiP I,ORD · g(uiORD(t)), (4.29)

where wiP I,ORD > 0 if and only if the ith instruction in the
grounding strategy corresponds to the process P . This
formalizes the fact that the ith ordinal node excites a
process intention node corresponding to the ith instruction.

The activation variables of the CoS nodes of these pro-
cesses are called uPC. They follow the generic CoS node
equation (Equation 2.23). The inputs to these CoS nodes
vary from process to process and are specified in the fol-
lowing. Note that these inputs come from fields that are
introduced in upcoming sections. They are given here for
reasons of text organization. It might be necessary to refer
back to these equations later in order to understand them.
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The start grounding process begins the grounding of a
new frame. It has to be activated in conjunction with an
attribute concept node reflecting an attribute value of the
object that is to be grounded. The input to its CoS node
is given by

sSGC(t) = wSGC,TCF ·max
x,y

g(uTCF(t)), (4.30)

which is a contraction coupling from the target candidates
field22 with activation uTCF multiplied by a synaptic weight22 see Section 4.6

wSGC,TCF. Thus, the CoS node of the start grounding pro-
cess gets activated once a peak has formed in the target
candidates field.

The specify attribute process allows to specify further
attribute values and also has to be activated in conjunction
with an attribute concept node. The input to its CoS node
is given by

sSAC(t) = wSAC,ETCC · g(uETCC(t)), (4.31)

which is excitatory input from the CoS node of the eliminate
target candidates process23. Thus, the CoS node of the23 see Section 4.5.2

specify attribute process gets activated once the eliminate
target candidates process has finished.

The specify reference process brings an object into the
role of the reference object. It is also activated in conjunc-
tion with an attribute concept node, which specifies an
attribute value of the reference object. The input to its
CoS node is given by

sSRC(t) = wSRC,RF ·max
x,y

g(uRF(t)), (4.32)

which is a contraction coupling from the reference field2424 see Section 4.9

with activation uRF multiplied by a synaptic weight wSRC,RF.
Thus, the CoS node of the start grounding process gets
activated once a peak has formed in the reference field.

The specify reference process has to be followed in the
sequence by the specify relation process, which is activated
in conjunction with a spatial relation that the current frame
bears to the reference object. The input to its CoS node is
given by

sSRLC(t) = wSRLC,ETCC · g(uETCC(t)), (4.33)

which is excitatory input from the CoS node of the eliminate
target candidates process25. Thus, the CoS node of the25 see Section 4.5.2
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specify relation process gets activated once the eliminate
target candidates process has finished.

The end grounding process signals that the grounding
of the current frame is complete and evokes a selection
decision. The input to its CoS node is given by

sEGC(t) = wEGC,TSF ·max
x,y

g(uTSF(t)), (4.34)

which is a contraction coupling from the target selection
field26 with activation uTSF multiplied by a synaptic weight 26 see Section 4.7

wEGC,TSF. Thus, the CoS node of the end grounding process
gets activated once a peak has formed in the target selection
field.

4.5.2 Further processes

The proceed process does not correspond to any instruction
in the sequence. Instead, its purpose is to cause the next
ordinal node in the sequence to become active, which it
achieves by inhibiting all ordinal nodes27. The activation 27 see Equation 2.24

uPI of its intention node follows the generic intention node
equation (Equation 2.22). The input to that node is given
by

sPI(t) =wPI,SGC · g(uSGC(t))

+ wPI,SAC · g(uSAC(t))

+ wPI,SRC · g(uSRC(t))

+ wPI,SRLC · g(uSRLC(t))

+ wPI,EGC · g(uEGC(t)).

(4.35)

Thus, it is excited by the CoS nodes of the processes for
the instructions. This causes the successful completion
of any of these processes to trigger the activation of the
intention node of the proceed process, which in turn results
in activating the next ordinal node due to inhibition of
the current ordinal node. Since this effectively causes the
old process intention node to become inactive, its CoS also
becomes inactive, and thus the intention node of the proceed
process becomes inactive as well. This is why the proceed
process does not need a CoS node.

The eliminate target candidates process eliminates target
candidates that do not have a specified attribute value or
that do not bear a specified relation to a reference object28. 28 see Section 4.6

The activation uETCI of its intention node follows the generic
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intention node equation (Equation 2.22). The input to that
node is given by

sETCI(t) =wETCI,SAI · g(uSAI(t))

+ wETCI,SRLI · g(uSRLI(t)),
(4.36)

where the first line is excitatory input from the intention
node of the specify attribute process and the second line
is excitatory input from the intention node of the specify
relation process. Thus, the eliminate target candidates process
gets triggered whenever one of these processes is activated.
The CoS node of the eliminate target candidates process
with activation uETCC receives no external input, but has
a relatively high time constant τ , causing it to become
active after a fixed time. As formalized in Equation 4.31
and Equation 4.33, it excites the CoS nodes of the specify
attribute process and the specify relation process. Hence,
the successful completion of these processes depends on
completing the elimination of target candidates.

4.6 Target candidates
The target candidates field has the purpose of holding peaks
at the spatial locations of all objects which, at the current
stage of processing, are still viable candidates for the frame
that is currently poised to be grounded.

Upon starting the grounding of a new frame with the
start grounding instruction, it is filled with an initial set of
target candidates determined by the attribute concept that
is activated in conjunction with that instruction. Subse-
quently, with each new specify attribute instruction or specify
relation instruction, these target candidates are eliminated
until only target candidates consistent with all specified
attribute values and relations remain.

For example, upon grounding prototype 1 from Fig-
ure 2.3 with the sequence of grounding instructions from
Figure 3.8 (lines 1-3), the target candidates field should
initially be empty. After processing line 1, it should hold
peaks at the spatial location of all green objects. Upon
processing line 2, all peaks that do not correspond to the
spatial locations of diagonal objects should decay, thus leav-
ing only the spatial locations of all green diagonal objects.
Similarly, upon grounding prototype 2 from Figure 2.3 with
the sequence of grounding instructions from Figure 3.8
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(lines 8-13), the target candidates field should again initially
be empty. After processing line 8, it should hold peaks
at the spatial location of all red objects. After processing
lines 9 and 10, all peaks corresponding to objects that are
not below the previously grounded green object should be
eliminated. After processing lines 11 and 12, all peaks
corresponding to objects that are not above the previously
grounded blue object should be eliminated.

When the intention node of the start grounding process
is active, homogeneous input brings the target candidates
field into a dynamic regime where it can form peaks. Input
from the spatial attention field determines where peaks arise.
Lateral interactions make the target candidates field self-
sustained, such that peaks remain in the absence of external
input. When peaks have formed in the target candidates field,
the CoS node of the start grounding process gets activated29. 29 see Equation 4.30

The activation uTCF of the target candidates field follows
the differential equation

τ u̇TCF(x, y, t) =− uTCF(x, y, t) + h

+ [kTCF,TCF ∗ g(uTCF)](x, y, t)

+ [kTCF,SAF ∗ g(uSAF)](x, y, t)

+ wTCF,SGI · g(uSGI(t))

− wTCF,ETCI · g(uETCI(t))

+ [kTCF,CF ∗ g(uCF)](x, y, t)

− wTCF,EGC · g(uEGC(t)).

(4.37)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the spatial attention
field. The fourth line formalizes global excitatory input from
the intention node of the start grounding process. The fifth
line formalizes global inhibitory input from the intention
node of the eliminate target candidates process. The sixth
line formalizes input from the comparison field30. Together, 30 see below

the fifth line and the sixth line cause peaks in the target
candidates field to decay upon activation of the eliminate
target candidates process unless they receive support from
the comparison field. The last line formalizes inhibitory
input from the CoS node of the end grounding process,
which empties the field for future grounding processes.

The comparison field has the purpose of holding peaks
at the positions of all target candidates that are presently
being attended. It receives input from the spatial attention
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field and the target candidates field, causing peaks to form
where input from the two fields overlaps. The activation
uCF of the comparison field follows the differential equation

τ u̇CF(x, y, t) =− uCF(x, y, t) + h

+ [kCF,CF ∗ g(uCF)](x, y, t)

+ [kCF,SAF ∗ g(uSAF)](x, y, t)

+ [kCF,TCF ∗ g(uTCF)](x, y, t).

(4.38)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the spatial attention field.
The last line formalizes input from the target candidates
field.

Recall that the target candidates field receives global
inhibition from the intention node of the eliminate target
candidates process (Equation 4.37, line 5). Moreover, it
receives local excitation from the comparison field. The
parameters are tuned such that activation of the eliminate
target candidates process causes peaks in the target candi-
dates field to decay unless they receive support from the
comparison field. Effectively, this causes only those target
candidates to remain that currently receive spatial attention.
In the case of the specify attribute process, they are those
target candidates that have the specified attribute value,
since the specify attribute process is activated in conjunction
with an attribute concept node, which causes attention to
be drawn to all objects with that attribute value. In the
case of the specify relation process, they are those target
candidates that bear the specified relation to the reference
object, as will be described in Section 4.9. The overall
mechanism allows to iteratively eliminate target candidates
by listing attributes or relations to other objects.

4.7 Target selection

The target selection field has the purpose of selecting a single
target object from the set of target candidates. Input from
the target candidates field creates subthreshold bumps of
activation at the positions of the target candidates. When
the intention node of the end grounding process gets acti-
vated, homogeneous input brings the target selection field
into a dynamic regime where it can form a peak. Global
inhibition is high, allowing only a single peak of activation
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to form. This way, when multiple target candidates remain,
a selection decision is enforced.

When a peak has formed in the target selection field,
the CoS node of the end grounding process gets activated31. 31 see Equation 4.34

When this happens, we consider the currently processed
frame of the frame graph as grounded.

The activation uTSF of the target selection field follows
the differential equation

τ u̇TSF(x, y, t) =− uTSF(x, y, t) + h

+ [kTSF,TSF ∗ g(uTSF)](x, y, t)

+ [kTSF,TCF ∗ g(uTCF)](x, y, t)

+ wTSF,EGI · g(uEGI)(t)

− [kTSF,IORF ∗ g(uIORF)](x, y, t).

(4.39)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the target candidates
field. The fourth line formalizes global excitatory input
from the intention node of the end grounding process. The
last line formalizes inhibitory input from the inhibition of
return field32. 32 see Section 4.10

4.8 Mental map
In order to be able to refer to previously grounded objects
later, as is necessary for grounding relations between objects,
we assume that each grounded object is stored in a mental
map. The color/space mental map is defined over two spatial
dimensions and one color dimension and is self-sustained.
It receives input from the target selection field and the
color/space perception field. If input from these two fields
overlaps, the mental map forms a peak. This way, the
mental map stores a representation of the position and
color of each grounded object.

The activation uCSMM of the color/space mental map
follows the differential equation

τ u̇CSMM(x, y, c, t) =− uCSMM(x, y, c, t) + h

+ [kCSMM,CSMM ∗ g(uCSMM)](x, y, c, t)

+ [kCSMM,CSPF ∗ g(uCSPF)](x, y, c, t)

+ [kCSMM,TSF ∗ g(uTSF)](x, y, t)

− wCSMM,NTCN · g(uNTCN(t)).

(4.40)
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The first two lines are the generic DNF equation. The third
line formalizes input from the color/space perception field.
The fourth line formalizes an expansion coupling from the
target selection field along the color dimension c. The last
line formalizes inhibitory input from the no target candidates
node33.33 see Section 4.10

The orientation/space mental map implements an analo-
gous mechanism for the orientation attribute. Its activation
uOSMM follows the differential equation

τ u̇OSMM(x, y, φ, t) =− uOSMM(x, y, φ, t) + h

+ [kOSMM,OSMM ∗ g(uOSMM)](x, y, φ, t)

+ [kOSMM,OSPF ∗ g(uOSPF)](x, y, φ, t)

+ [kOSMM,TSF ∗ g(uTSF)](x, y, t)

− wOSMM,NTCN · g(uNTCN(t)).

(4.41)

The first two lines are the generic DNF equation. The third
line formalizes input from the orientation/space perception
field. The fourth line formalizes an expansion coupling from
the target selection field along the orientation dimension φ.
The last line formalizes inhibitory input from the no target
candidates node.

Finally, the shape/space mental map implements an
analogous mechanism for the shape attribute. Its activation
uSSMM follows the differential equation

τ u̇SSMM(x, y, χ, t) =− uSSMM(x, y, χ, t) + h

+

∫ ∫
g(uSSMM(x′, y′, χ, t))

kSSMM,SSMM(x− x′, y − y′)dx′dy′

+

∫ ∫
g(uSSPF(x′, y′, χ, t))

kSSMM,SSPF(x− x′, y − y′)dx′dy′

+ [kSSMM,TSF ∗ g(uTSF)](x, y, t)

− wSSMM,NTCN · g(uNTCN(t)).

(4.42)

The first three lines are the generic DNF equation. The
fourth and fifth line formalize input from the shape/space
perception field. The sixth line formalizes an expansion
coupling from the target selection field along the shape
dimension χ. The last line formalizes inhibitory input from
the no target candidates node.
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Figure 4.25: Grounding strategy for the
frame graph from Figure 4.24 when selecting
the reference object from the scene.

1 start grounding (color: red)
2 specify reference (color: green, source: scene)
3 specify relation (spatial relation: below)
4 end grounding

Figure 4.26: Grounding strategy for the
frame graph from Figure 4.24 when selecting
the reference object from the mental map.

1 start grounding (color: green)
2 end grounding
3 start grounding (color: red)
4 specify reference (color: green, source: mental

map)
5 specify relation (spatial relation: below)
6 end grounding

4.9 Apprehending relations

When grounding a frame (the target frame) that is charac-
terized by a relation to another frame (the reference frame),
all target candidates for the target frame that do not bear
that relation to the object selected for the reference frame
have to be eliminated. For example, when grounding “a
red object below a green object” (Figure 4.24), the frame
for the red object is the target frame and the frame for
the green object is the reference frame. Apprehending the
relation surmounts to eliminating all red target candidates
from the target candidates field that are not below the green
object.

prototype	1
color:	red

prototype	2
color:	green

below

Figure 4.24: Frame graph for the query “a
red object below a green object”.

There are two cases to consider. The first case is to
select the reference object directly from the scene (see the
grounding strategy in Figure 4.25). This does not allow
backtracking34, and thus should only be done if there is 34 see Section 4.10
reason to believe that there is only a single reference object
with a given attribute value. The second case is that an
object for the reference frame has already been selected in
a previous grounding step (see the grounding strategy in
Figure 4.26). In that case, the reference object is stored in
the mental map, and in order to ground the target frame, it
is necessary to attend to a previously grounded green object
from the mental map, which can be achieved by activating
the from mental map node.

The reference field has the purpose of holding a peak at
the spatial location of the object selected for the reference
frame. It receives global excitatory input from the intention
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node of the specify reference process, which brings it into
a dynamic regime where it can form a peak. Moreover, it
receives input from the spatial attention field, causing it to
form a peak at the attended spatial location. When this
happens, the CoS node of the specify reference process gets
activated35.35 see Equation 4.32

Recall from Section 4.5 that the intention node of the
specify reference process is always activated in conjunction
with an attribute concept node specifying one of the at-
tribute values of the reference object. The spatial attention
field thus holds a peak at the spatial location of the refer-
ence object, causing the reference field to form a peak at
that location.

Recall further from Section 3.2 that the specify reference
instruction is always followed by a specify relation instruction.
The reference field is therefore self-sustained, such that the
position of the reference object is maintained for the next
instruction. Upon completion of the specify relation process,
global inhibitory input from its CoS node causes the peak
in the reference field to decay.

The activation uRF of the reference field follows the
differential equation

τ u̇RF(x, y, t) =− uRF(x, y, t) + h

+ [kRF,RF ∗ g(uR)](x, y, t)

+ [kRF,SAF ∗ g(uSAF)](x, y, t)

+ wRF,SRI · g(uSRI(t))

− wRF,SRLC · g(uSRLC(t)).

(4.43)

The first two lines correspond to the generic DNF equation.
The third line formalizes input from the spatial attention
field. The fourth line formalizes global excitatory input
from the intention node of the specify reference process. The
last line formalizes global inhibition from the CoS node of
the specify relation process.

After a peak has formed in the reference field, the specify
relation process has to be activated in conjunction with the
concept node of the spatial relation that the target frame
bears to the reference frame. The goal now is to attend
to the spatial locations of target candidates that bear the
specified spatial relation to the reference object.

For this purpose, the representation of the target can-
didates is transformed into a different coordinate system
that is centered on the reference object. This coordinate
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transformation can be neurally implemented by a steerable
neural mapping (Section 2.9.6); here it is implemented as a
convolution to speed up numerical simulations. The output
of the transformation is fed into the spatial relation field,
which also receives patterned input from the active spatial
relation concept node. When these two inputs coincide,
peaks can form on the positions of target candidates that
bear the specified spatial relation to the reference object. A
second coordinate transform converts these peaks back to
absolute coordinates and projects into the spatial attention
field36. 36 see Equation 4.10

The activation uSRF of the spatial relation field follows
the differential equation

τ u̇SRF(x, y, t) =− uSRF(x, y, t) + h

+ [kSRF,SRF ∗ g(uSRF)](x, y, t)

+

∫ ∫
g(uTCF(x′, y′, t))

· g(uRF(x− x′, y − y′, t))dx′dy′

+
∑

S∈{L,R,A,B}

W S
Spat(x, y) · g(uSSRCN(t)).

(4.44)

The first two lines correspond to the generic DNF equation.
The third and fourth line formalize the approximation of
the steerable neural mapping as a convolution of the output
of the target candidates field with a kernel given by the
output of the reference field. The last line formalizes input
from the set of spatial relation concept nodes multiplied by
the synaptic connection weights W S

Spat defining the spatial
relation patterns37. 37 see Section 4.3.4

4.10 Backtracking
Until now, we have assumed that the target selection field
can always select a target object for the current frame.
However, this presupposes that the target candidates field
is not empty. When it is empty, this means that no object
could be found which has all the specified attribute values
and bears all the specified relations to the reference objects.

This may happen for one of two reasons. The first
possible reason is that there is no object in the scene which
matches the combinatorial concept. For understanding the
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second possible reason, recall from Section 4.7 that when
multiple target candidates remain, the target selection field
makes an arbitrary selection decision. It may turn out that
this selection decision is false. However, this cannot be
known at the time when the selection decision is made. It
can, however, be inferred based on the fact that in a future
grounding process, no target candidates remain, which may
indicate that one of the previous grounding steps made a
false selection decision, causing a false reference object to
be used for target candidate elimination.

In order to identify that no target candidates remain for
the current frame, we introduce a no target candidates node,
which becomes active whenever target candidate elimination
has eliminated all peaks in the target candidates field. It
is excited by the intention node of the eliminate target
candidates process and inhibited by a contraction coupling
from the target candidates field. The parameters are chosen
such that the node is active if and only if the eliminate
target candidates process is active while there is no peak in
the target candidates field, which is the case whenever the
eliminate target candidates process has eliminated all target
candidates.

The activation uNTCN of the no target candidates node
follows the differential equation

τ u̇NTCN(t) =− uNTCN(t) + h+ wNTCN,NTCN · g(uNTCN(t))

+ wNTCN,ETCI · g(uETCI(t))

− wNTCN,TCF ·max
x,y

g(uTCF(x, y, t)).

(4.45)

The first line corresponds to the generic DNN equation. The
second line formalizes excitatory input from the intention
node of the eliminate target candidates process. The third
line formalizes an inhibitory contraction coupling from the
target candidates field.

Recall that the memory nodes receive global inhibitory
input from the no target candidates node.38 Thus, in case38 see Equation 4.28

no target candidates remain in a grounding process, all
memory nodes are deactivated, causing the serial order
mechanism to start again from the beginning. This allows
the system to make different selection decisions for the
frames.

Further recall that the mental map fields receive global
inhibitory input from the no target candidates node.39 This39 see Equations 4.40 to 4.42
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causes the mental map to be reset completely when the
grounding attempt fails, so that the new grounding attempt,
which starts again from the beginning of the sequence, can
make different selection decisions.

In order to avoid making the same selection decisions in
the next attempt at processing the grounding sequence, the
inhibition of return field remembers all the target selection
decisions. It is defined over the spatial dimensions x and y
and is self-sustained. It inhibits the target selection field40, 40 see Equation 4.39

which biases the competition in favor of objects that have
not been tried before. Thus, during the next attempt
at processing the grounding sequence, different selection
decisions are made.

The activation uIORF of the inhibition of return field
follows the differential equation

τ u̇IORF(x, y, t) =− uIORF(x, y, t) + h

+ [kIORF,IORF ∗ g(uIORF)](x, y, t)

+ [kIORF,TSF ∗ g(uTSF)](x, y, t).

(4.46)

The first two lines correspond to the generic DNF equation.
The third line formalizes excitatory input from the target
selection field.
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Results 5

This chapter presents a number of simulations of the archi-
tecture using the software framework cedar (Lomp, Zibner,
Richter, Ranó, & Schöner, 2013). The various simulations Lomp, O., Zibner, S. K. U., Richter, M.,

Ranó, I., & Schöner, G. (2013). A soft-
ware framework for cognition, embodiment,
dynamics, and autonomy in robotics: Cedar.
In International conference on artificial neu-
ral networks (pp. 475–482). Springer

differ only in perceptual input and queries, which can be
supplied by the user in the form of the input image to the
perceptual fields (see Section 4.1) and the list of instructions
and parameters that encode the grounding strategy (see
Section 4.5.1). The model parameters are left unchanged
across simulations.

Queries have been chosen to demonstrate qualitatively
different scenarios of varying complexity. They differ in
the number of frames, the number of attributes per frame,
the number of relations between frames, and the pattern
of interdependence between frames. The images have been
specifically designed to provide a test bed for the respective
queries.

For each query, the time course of activation of nodes
and fields is plotted and analyzed qualitatively for its cor-
rectness. Criteria for judging the correct behavior include
the following:

1. If there is at least one object in the perceptual input
that matches the query, then the target selection
field contains a peak for this object at the end of the
grounding sequence.

2. For each frame that is part of the query, the mental
map stores a representation of the object that is
matched to that frame.
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3. Processes are carried out in the correct order and do
not interfere with each other.

4. Processes meet their conditions of satisfaction.

5. Fields form stable representations.

6. At any time, the pattern of activation over nodes
and fields coheres with the demands of the currently
active process.

Overall, it was found that the model fulfills these criteria
in all experiments.

5.1 Single frame, single attributeprototype	1
color:	red

Figure 5.1: Query with a single frame and
a single attribute.

Figure 5.2: Scene for the query from
Figure 5.1.

The most simple conceivable query is to search for an object
with a single attribute value, e.g., “a red object”. This is
not yet a combinatorial query, thus the mental map and
the relational machinery of the architecture play no role.
Nonetheless, it serves as a good introductory example to
understand the roles and interactions of some of the fields
and processes. Figure 5.1 depicts the trivial frame graph
for that query. Figure 5.2 depicts the exemplary scene in
which the query is performed. Notice that there are three
possible targets for the query. The grounding strategy for
that query is given as follows:

1 start grounding (color: red)
2 end grounding

The time course of activation of relevant nodes and
activation snapshots of relevant fields upon performing that
query are depicted in Figure 5.3.

At time t1, ordinal node 1 has caused the red color
concept node to become active. As a result, a peak formed
in the red region of the color attention field. Through the
expansion coupling with the color/space attention field, the
red region of that field received homogeneous excitation,
which resulted in peaks at the positions and colors of the red
objects. Through the contraction coupling with the spatial
attention field, peaks formed in that field on the locations
of the red objects. Meanwhile, ordinal node 1 has activated
the start grounding process intention, which provides global
excitation to the target candidates field, bringing it into a
dynamic regime where it can form peaks.
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Figure 5.3: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.1. The x axes of
all figures are time axes and indicate time points of interest (t1, t2, . . . ). (a) Active ordinal nodes as rectangles
whose range corresponds to the time range of activation. (b) Active processes as colored rectangles whose range
corresponds to the time range during which the intention node of the respective process is active. The range of the
stripe pattern corresponds to the time range during which the CoS node of that process is active. (c) Activation
time courses of color concept nodes. (d) Activation snapshots of relevant fields at time points of interest.
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At time t2, peaks have formed in the target candidates
field on the locations of the red objects. As a result, the CoS
node of the start grounding process gets activated, which
signals that the process has successfully finished. The
target candidates have also created subthreshold bumps of
activation in the target selection field.

At time t3, the CoS node of the start grounding process
has activated the intention node of the proceed process,
which starts inhibiting ordinal node 1.

At time t4, ordinal node 1 is inactive, and, consequently,
the start grounding process and the red color concept node
are inactive as well. The target candidates field thus no
longer receives global excitation, and the spatial attention
field no longer receives input at the locations of the red
objects. Nonetheless, due to the self-excitation of the target
candidates field, the peaks on the red objects are maintained.

At time t5, ordinal node 2 has caused the intention node
of the end grounding process to become active, which pro-
vided global excitation to the target selection field, causing
it to form a peak and, thus, to select one of the target
candidates as a target object for the query. Through the
excitatory expansion coupling with the color/space mental
map, it stored an object representation of the selected target
object.

At time t6, the CoS node of the end grounding process
has inhibited the target candidates field, thus emptying it for
future grounding processes. The color/space mental map has
maintained its representation of the selected target object,
allowing future grounding processes to refer back to it.

prototype	1
color:	red
orientation:	horizontal
shape:	rectangle

Figure 5.4: Query with a single frame and
multiple attributes.

Figure 5.5: Scene for the query from
Figure 5.4.

5.2 Single frame, multiple
attributes

Queries become more interesting when multiple attributes
are combined, as in “a red horizontal rectangle”. Figure 5.4
depicts the frame graph and Figure 5.5 depicts the scene
for that query. The grounding strategy is given as follows:

1 start grounding (color: red)
2 specify attribute (orientation: horizontal)
3 specify attribute (shape: rectangle)
4 end grounding
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This grounding strategy instructs the GSEx to first select
a set of red target candidates, then to eliminate all target
candidates that are not horizontal, and then to eliminate
all target candidates which do not have a rectangle shape.

This query does not yet require the mental map and
relational machinery of the architecture, since it contains
a single frame that does not refer to any other frames.
However, this query serves to demonstrate the sequential
target candidate elimination process.

Figure 5.6 depicts the activation time course of relevant
nodes and fields upon grounding that frame. At time t1,
ordinal node 1 has activated the red color concept node,
which has caused the spatial attention field to form peaks
on the red objects. The ordinal node has also activated
the start grounding process intention, which has brought
the target candidates field into a dynamic regime where it
can form peaks, resulting in self-sustained peaks on the
positions of the red objects.

At time t2, ordinal node 2 has activated the horizontal ori-
entation concept node, which has caused the spatial attention
field to form peaks on the horizontal objects. As a result,
the comparison field has formed peaks on all target candi-
dates that are horizontal. Moreover, ordinal node 2 has
activated the specify attribute process intention, which has
activated the eliminate target candidates process intention.

At time t3, the eliminate target candidates process inten-
tion has eliminated all target candidates that do not receive
support from the comparison field, i.e., all target candidates
that are not horizontal. Consequently, the target candidates
field retains peaks on all red horizontal objects.

At time t4, ordinal node 3 has activated the rectangle
shape concept node, which has caused the spatial attention
field to form peaks on all rectangles. As a result, the
comparison field has formed peaks on all target candidates
that are rectangles. Moreover, ordinal node 3 has activated
the specify attribute process intention, which has activated
the eliminate target candidates process intention.

At time t5, the eliminate target candidates process inten-
tion has eliminated all target candidates that do not receive
support from the comparison field, i.e., all target candidates
that are not rectangles. Consequently, the target candidates
field retains peaks on all red horizontal rectangles.

At time t6, ordinal node 4 has activated the end ground-
ing process intention, causing the target selection field to
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Figure 5.6: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.4. (a) Active
ordinal nodes. (b) Active processes. (c) Activation time courses of color concept nodes. (d) Activation time courses
of orientation concept nodes. (e) Activation time courses of shape concept nodes. (f) Activation snapshots of
relevant fields at time points of interest.
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form a peak on the red horizontal rectangle.

5.3 Single relation, unambiguous
reference

So far, the simulations dealt with single frames without
relations. The reference field and the spatial relation field
were thus unused. Sometimes, a given object cannot be
disambiguated based on attribute values alone. Figure 5.8
depicts a scene where this is the case. There are two red
circles. The only way for a linguistic phrase to disambiguate
the two is by specifying the spatial relation between the red
target object and the unique green reference object, i.e., “a
red object below a green object” (Figure 5.7).

prototype	1
color:	red

prototype	2
color:	green

below

Figure 5.7: Query with a single relation.

Figure 5.8: Scene for the query from
Figure 5.7.

The grounding strategy is given as follows:

1 start grounding (color: red)
2 specify reference (color: green, source: scene)
3 specify relation (spatial relation: below)
4 end grounding

It instructs the GSEx to first select a set of red target
candidate objects (line 1), then to select a green reference
object from the scene and store it in the reference field (line
2), then to guide spatial attention to all target candidates
below the reference object (line 3), which in turn causes all
target candidates that are not below the reference object
to be eliminated, and finally to select the remaining red
target candidate in the target selection field (line 4).

Figure 5.9 depicts the activation time course of relevant
nodes and fields upon grounding the query. At time t1,
ordinal node 1 has activated the start grounding process
intention and the red color concept node, causing the two
red target candidates to be stored in the target candidates
field.

At time t2, ordinal node 2 has activated the specify refer-
ence process intention, which has brought the reference field
into a dynamic regime where it can form a peak. Moreover,
it has activated the green color concept node, which has
caused spatial attention to be directed to the green object.
Consequently, the position of the green object is stored in
the reference field.

At time t3, ordinal node 3 has activated the below spatial
relation concept node, which has caused the spatial below
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Figure 5.9: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.7. (a) Active
ordinal nodes. (b) Active processes. (c) Activation time courses of color concept nodes. (d) Activation time courses
of spatial relation concept nodes. (e) Activation snapshots of relevant fields at time points of interest.
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pattern to be fed into the spatial relation field. This resulted
in a peak on the relative position of the red object below the
green object. Through the reverse coordinate transforma-
tion, a peak on the absolute position of that object formed
in the spatial attention field. As a result, the comparison
field formed a peak on that position. Ordinal node 3 has
also activated the specify relation process intention, which
has in turn activated the eliminate target candidates process
intention.

By time t4, the eliminate target candidates process in-
tention has eliminated all target candidates that did not
receive excitatory support from the comparison field, i.e.,
all target candidates that are not below the green object,
leaving the single red object below the green object.

At time t5, the red object is selected in the target selec-
tion field.

5.4 Multiple relations

prototype	1
color:	red

prototype	2
color:	green

prototype	2
color:	blue

below above

Figure 5.10: Query with multiple
relations.

Figure 5.11: Scene for the query from
Figure 5.10.

Assume we want to refer to the red object in the middle
of Figure 5.11. This object can neither be disambiguated
based on attributes, nor based on a single relation. Instead,
it has to be disambiguated by the fact that it is a red object
that is both below a green object and above a blue object.
Figure 5.10 depicts the frame graph for that query.

The grounding strategy is given as follows:
1 start grounding (color: red)
2 specify reference (color: green, source: scene)
3 specify relation (spatial relation: below)
4 specify reference (color: blue, source: scene)
5 specify relation (spatial relation: above)
6 end grounding

The activation time courses of relevant nodes and fields
upon grounding that query are depicted in Figure 5.12. At
time t1, ordinal node 1 has activated the start grounding
process intention and the red color concept node, causing
the three red objects to be stored in the target candidates
field.

At time t2, ordinal node 2 has activated the specify
reference process intention and the green color concept node,
causing the green object to be stored in the reference field.

At time t3, ordinal node 3 has activated the specify rela-
tion process intention and the below spatial relation concept
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Figure 5.12: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.10. (a) Active
ordinal nodes. (b) Active processes. (c) Activation time courses of color concept nodes. (d) Activation time courses
of spatial relation concept nodes. (e) Activation snapshots of relevant fields at time points of interest.
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node, causing the spatial relation field to form peaks on the
relative positions of the red target candidates that are below
the green reference object.

At time t4, the eliminate target candidates process inten-
tion has eliminated all target candidates that are not below
the green object.

At time t5, ordinal node 4 has activated the specify
reference process intention and the blue color concept node,
causing the blue object to be stored in the reference field.

At time t6, ordinal node 5 has activated the specify rela-
tion process intention and the above spatial relation concept
node, causing the spatial relation field to form peaks on
the relative positions of the red target candidates that are
above the blue reference object.

At time t7, the eliminate target candidates process inten-
tion has eliminated all target candidates that are not above
the blue object.

At time t8, ordinal node 6 has activated the end ground-
ing process intention, causing the remaining red target can-
didate to be selected in the target selection field.

5.5 Chaining relations

prototype	1
color:	blue

prototype	2
color:	red

below

prototype	3
color:	green

below

Figure 5.13: Query with chained relations.

Figure 5.14: Scene for the query from
Figure 5.13.

Consider the scene in Figure 5.14, and assume that a speaker
wants to refer to the leftmost blue object. This object
cannot be disambiguated based on its attributes alone, nor
can it be disambiguated based on the fact that it is below a
red object, since there are two red objects that have a blue
object below it. However, it can be uniquely described by
the denotational phrase “a blue object below a red object
below a green object” (Figure 5.13).

In this scenario, we first have to find a red object below
the green object, remember that red object, and then find a
blue object that is below this previously selected red object.
This is achieved by the following grounding strategy:

1 start grounding (color: red)
2 specify reference (color: green, source: scene)
3 specify relation (spatial relation: below)
4 end grounding
5 start grounding (color: blue)
6 specify reference (color: red, source: mental

map)
7 specify relation (spatial relation: below)
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8 end grounding

The red object assumes the role of the target object in the
first grounding step, and the role of the reference object in
the second grounding step. It is thus necessary to store the
red object in the mental map after the first grounding step
and refer to the stored red object in the second grounding
step.

Figure 5.15 depicts the activation time course of relevant
nodes and fields upon grounding the query from Figure 5.13.
At time t1, ordinal node 1 has activated the start grounding
process intention and the red color concept node, which
has caused the two red objects to be stored in the target
candidates field.

At time t2, ordinal node 2 has activated the specify
reference process intention and the green color concept node,
which has caused the green object to be stored in the
reference field.

At time t3, ordinal node 3 has activated the specify rela-
tion process intention and the below spatial relation concept
node. By time t4, this has caused all red target candidates
which are not below the green object to be eliminated.

At time t5, ordinal node 4 has activated the end ground-
ing process intention, which has caused the target selection
field to select the red object. As a result, this red object
was stored in the mental map.

At time t6, ordinal node 5 has activated the start ground-
ing process intention and the blue color concept node, which
has caused the target candidates field to form peaks on the
three blue objects.

At time t7, ordinal node 6 has activated the specify
reference process intention, the red color concept node and
the from mental map node. This has caused spatial attention
to be directed to the red object from the mental map, which
was stored in the reference field.

At time t8, ordinal node 7 has activated the specify rela-
tion process intention and the below spatial relation concept
node. By time t9, this has caused all blue target candi-
dates which are not below the red reference object to be
eliminated.

At time t10, ordinal node 8 has activated the end ground-
ing process intention, which has caused the target selection
field to select the blue target object.
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Figure 5.15: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.13. (a) Active
ordinal nodes. (b) Active processes. (c) Activation time courses of color concept nodes. (d) Activation time courses
of spatial relation concept nodes. (e) Activation time course of from mental map node. (f) Activation snapshots of
relevant fields at time points of interest.
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5.6 Single relation with
backtracking

prototype	1
color:	red

prototype	2
color:	green

below

Figure 5.16: Query with multiple
relations.

Figure 5.17: Scene for the query from
Figure 5.16.

Consider again the query “a red object below a green object”
(Figure 5.16), this time with the scene in Figure 5.17. Notice
that there are two green objects. Thus, we cannot directly
select a set of red target candidates and a green object from
the scene, since the reference field might end up forming
a peak on the wrong green object. Instead, we need to
consider the selection of the green object as a grounding
step of its own.

A grounding strategy for this scenario is given as follows:

1 start grounding (color: green)
2 end grounding
3 start grounding (color: red)
4 specify reference (color: green, source: mental

map)
5 specify relation (spatial relation: below)
6 end grounding

First, the green object is selected as a target object,
enforcing a selection decision. Then, a red object below
the selected green object is selected. The backtracking
machinery of the architecture, which consists of the no target
candidates node and the inhibition of return field, ensures
that in case a wrong green object is selected, the grounding
starts again from the beginning and selects a different green
object.

Figure 5.18 depicts the time course of relevant nodes
and fields upon performing that grounding strategy. At
time t1, ordinal node 1 has activated the start grounding
process intention and the green color concept node, causing
the two green target candidates to be stored.

At time t2, ordinal node 2 has activated the end ground-
ing process intention, causing an arbitrary selection decision
between the two green objects to be made in the target
selection field. Note that the left green object is selected,
which is the wrong choice. However, at this stage, the sys-
tem is unable to tell that it was a wrong choice. As usual,
the green object is stored in the mental map. Moreover,
a peak has formed in the inhibition of return field on the
position of the selected green object.

At time t3, ordinal node 3 has activated the start ground-
ing process intention and the red color concept node, which
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Figure 5.18: Time course of relevant parts of the architecture as it grounds the concept in Figure 5.16. (a) Active
ordinal nodes. (b) Active processes. (c) Activation time courses of color concept nodes. (d) Activation time courses
of spatial relation concept nodes. (e) Activation time course of from mental map node. (f) Activation time course
of no target candidates node. (g) Activation snapshots of relevant fields at time points of interest.
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has caused the two red objects to be stored as target candi-
dates.

At time t4, ordinal node 4 has activated the specify
reference process intention, the green color concept node and
the from mental map node, causing the reference field to
form a peak on the previously selected green object from
the mental map.

At time t5, ordinal node 5 has activated the specify rela-
tion process intention and the below spatial relation concept
node, causing the spatial below pattern to be fed into the
spatial relation field. Since there are no red target candi-
dates below the green reference object, no peaks form in
that field and, consequently, spatial attention is not directed
to any target candidates. The comparison field thus also
does not form peaks on any target candidates.

At time t6, inhibition from the eliminate target candi-
dates process intention has eliminated all target candidates,
since none of them received excitatory support from the
comparison field. The fact that the target candidates field
is now empty releases inhibition from the no target candi-
dates node, causing it to become active. Subsequently, it
inhibits all memory nodes, causing the sequence to start
again from the beginning. Moreover, it inhibits the mental
map, emptying it for the new grounding attempt.

At time t7, ordinal node 1 has activated the start ground-
ing process intention and the green color concept node, caus-
ing the two green target candidates to be stored.

At time t8, ordinal node 2 has activated the end ground-
ing process intention, causing a selection decision between
the two green objects to be made in the target selection
field. Due to inhibition from the inhibition of return field,
the right green object is selected this time.

At time t9, ordinal node 3 has activated the start ground-
ing process intention and the red color concept node, which
has caused the two red objects to be stored as target candi-
dates.

At time t10, ordinal node 4 has activated the specify
reference process intention, the green color concept node and
the from mental map node, causing the reference field to
form a peak on the previously selected green object from
the mental map.

At time t11, ordinal node 5 has activated the specify rela-
tion process intention and the below spatial relation concept
node, which by time t12 has caused all target candidates
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which are not below the green reference object to be elimi-
nated.

At time t13, ordinal node 6 has activated the end ground-
ing process intention, which has caused the remaining red
target candidate to be selected in the target selection field.
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Discussion 6

This master thesis introduced a neural process model that is
able to ground combinatorial concepts in perception. Those
parts of the architecture that have been present in previ-
ous architectures – the perceptual system, the attentional
system, atomic concepts, apprehension of spatial relations,
working memory representations, role-filler binding, and
process organization – have been discussed in depth by
Richter (2018). The discussion of the present architecture Richter, M. (2018). A neural dynamic model

for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

thus focuses on its novel contributions – the grounding
strategy representation, the sequential elimination of target
candidates, and the passing of parts of the activation state
to future grounding processes via the mental map.

The discussion is organized as follows. Section 6.1 dis-
cusses arguments for the claim that combinatorial concepts
are transformed into a sequential grounding strategy, which
is then performed in sequence. Moreover, it motivates
the choice of the instruction set. Section 6.2 discusses a
range of models for how combinatorial structure may be
represented in the human brain, and concludes that a se-
quential representation interfaces most naturally with the
grounding system. Section 6.3 addresses the productiv-
ity, compositionality and systematicity challenge, which
is widely believed to necessitate Turing-machine-like ca-
pacities in the brain, and shows that our architecture can
account for these challenges while being significantly more
restricted in its computational capacities than a Turing
machine. Section 6.4 compares our grounding system to
some other models for the perceptual grounding of con-
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cepts. Section 6.5 addresses limitations of the architecture
in accounting for all aspects of concept combination and
suggests possible extensions to the architecture as future
research directions.

6.1 The grounding strategy

Recall that the GSEnc transforms combinatorial concepts
into a grounding strategy, i.e., a sequence of instructions
that have to be performed in order to ground it. Two
aspects of this view require motivation. First, we need to
motivate why the frames of a combinatorial concept should
be grounded in a sequence of grounding steps as opposed to
in parallel. Second, we need to motivate why the intruction
set is the way it is and, relatedly, why the grounding of each
frame should proceed by a sequence of target candidate
elimination steps.

6.1.1 Sequentiality arguments

There are theoretical and empirical reasons to suppose that
the grounding of the parts of a combinatorial proceeds
sequentially, one part at a time. For instance, the parts
are usually interdependent due to their relations. Thus,
grounding a frame may require that other frames on which
it depends have already been grounded before, demanding
a sequential grounding. If frames were grounded in parallel,
candidates for each frame would have to be selected blindly,
and subsequently the relationships with the objects selected
for other frames would have to be verified. In case the
relationships do not fit, a new blind selection of candidates
for each frame would have to be made. This is an extremely
inefficient way to ground a frame graph. It makes the
unrealistic prediction that the time it takes to ground a
frame graph consisting of k frames in a scene with n objects
scales proportionally with the number of k-subsets of a set
of n elements, i.e., n!

k!(n−k)!
. In contrast, when a selection

decision for one or more of the frames has already been
made, other frames can be grounded significantly more
efficiently by using the already grounded frames as reference.
For instance, prototype 2 from Figure 2.3 may be grounded
by finding all red objects that are both below the object
selected for prototype 3 and above the object selected for
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prototype 4, which allows to restrict the search space to a
narrow range and to decrease the search time dramatically.

Moreover, it is likely that grounding each part requires
certain neural resources that only exist once (e.g., spatial
attentional resources and working memory of objects and
relations). Using these neural resources to simultaneously
ground two different parts would lead to interference, even
if these parts are mutually independent.

This is backed by empirical evidence. Logan (1994) Logan, G. D. (1994). Spatial attention and
the apprehension of spatial relations. Journal
of Experimental Psychology: Human Percep-
tion and Performance, 20 (5), 1015

found that the time it takes to ground a relation between
two objects (e.g., finding a red object above a blue object)
increases proportionally with the number of distractors that
are distinguished from the two target objects only by their
spatial relation. This suggests that discriminating object
pairs based on their spatial relation requires selective spatial
attention, and that the consideration of different candidate
object pairs proceeds sequentially. Franconeri, Scimeca,
Roth, Helseth, and Kahn (2012) review further evidence Franconeri, S. L., Scimeca, J. M., Roth, J. C.,

Helseth, S. A., & Kahn, L. E. (2012). Flexi-
ble visual processing of spatial relationships.
Cognition, 122 (2), 210–227

that objects are attended to individually and sequentially
in search tasks involving spatial relations.

Further support comes from the fact that language
grounding usually proceeds in real time as a sequential
linguistic representation is processed, i.e., people raise at-
tention to the objects, one by one, as they are mentioned
in an unfolding discourse (Tanenhaus et al., 1995). Tanenhaus, M. K., Spivey-Knowlton, M. J.,

Eberhard, K. M., & Sedivy, J. C. (1995). In-
tegration of visual and linguistic information
in spoken language comprehension. Science,
268 (5217), 1632–16346.1.2 Arguments for instruction set

The particular choice of instruction set presented in Chap-
ter 3 requires motivation. Section 6.1.1 has already argued
why the grounding of the frames plausibly proceeds sequen-
tially. This motivates that the sequence of instructions is
divided into blocks of separate frame grounding processes
wrapped by a start grounding instruction and an end ground-
ing instruction. However, this does not yet establish that
the grounding of each individual frame should also proceed
by a sequence of instructions that are executed one after
another. It would be conceivable that the set of attributes
and set of relations in a frame are processed in parallel.

Consider, first, the fact that the start grounding instruc-
tion takes a single attribute value as parameter and results
in a selection of target candidate objects with that at-
tribute value, and the fact that the target candidates are
subsequently iteratively eliminated by a sequence of specify
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attribute instructions. A conceivable alternative would be
that the start grounding instruction takes all attribute values
of the frame as parameters and results in a simultaneous
consideration of all of them, selecting only objects as tar-
get candidates that have all the specified attribute values.
Another conceivable alternative would be that the start
grounding instruction takes no parameter, selecting all per-
ceivable objects as target candidates, and subsequently a
single specify attributes instruction with all attribute val-
ues as parameters eliminates all target candidates that do
not have the specified attribute values. These alternatives
are made implausible by psychophysical evidence. In a
series of experiments on the concurrent discrimination of
different attributes (color, form, and motion) reported by
Lee, Koch, and Braun (1999), it was found that differentLee, D. K., Koch, C., & Braun, J. (1999).

Attentional capacity is undifferentiated: Con-
current discrimination of form, color, and
motion. Perception & Psychophysics, 61 (7),
1241–1255

discriminations draw on the same limited attentional capac-
ities. Thus, attending to one attribute value comes at the
expense of not being able to attend to another attribute
value, even if they are values of different attributes. This
makes it plausible that attention to the attribute values
proceeds sequentially. Moreover, Burigo and Knoeferle
(2015) review covert and overt attentional studies duringBurigo, M. & Knoeferle, P. (2015). Visual

attention during spatial language comprehen-
sion. PLoS ONE, 10 (1), e0115758. doi:10 .
1371/journal.pone.0115758

spoken language comprehension. In these studies, it is
found that upon processing a noun phrase, the words in
that phrase are processed in an incremental fashion and
constrain spatial attention to relevant target candidates:
Initially, spatial attention is not directed. Upon hearing the
first attribute value, spatial attention is divided between
all objects with that attribute value. Subsequently, upon
hearing each new attribute value, attention narrows down
to all objects that have all attribute values mentioned so far.
This gives support to the initial attribute-based attentional
pop-out triggered by the start grounding instruction and the
subsequent iterative elimination triggered by the specify
attribute instructions.

Consider, next, the fact that spatial relations are pro-
cessed sequentially as opposed to in parallel. For example,
the fact that prototype 2 from Figure 2.3 is both below
prototype 3 and above prototype 4 is processed by first
eliminating all target candidates that are not below pro-
totype 3 and then eliminating all target candidates that
are not above prototype 4 (Figure 3.8, lines 9-12). In prin-
ciple, it is conceivable that all objects that are not below
prototype 3 and all objects that are not above prototype 4
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are eliminated in parallel. However, as found by Holcombe,
Linares, and Vaziri-Pashkam (2011), applying spatial rela- Holcombe, A. O., Linares, D., & Vaziri-

Pashkam, M. (2011). Perceiving spatial re-
lations via attentional tracking and shifting.
Current Biology, 21 (13), 1135–1139

tions requires selective attention to the objects, which can
only happen in sequence.

6.2 Representing combinatorial
structures

Recall that a combinatorial concept, which is the output
of a semantical analysis system as proposed by Jackendoff
(2002), is transformed into a sequential grounding strategy Jackendoff, R. (2002). Foundations of lan-

guage: Brain, meaning, grammar, evolution.
Oxford University Pressby the GSEnc, which so far has been described at a func-

tional rather than implementational level. We have not
committed to how the combinatorial concept is represented
prior to being transformed into a grounding strategy. Two
alternatives come to mind. First, the combinatorial concept
could be represented as a recursively nested symbolic struc-
ture. Second, it could be represented as an appropriately
structured sequence, i.e., a sequence in which the recursive
nesting is implicit (e.g., through bracketing). This section
considers both possibilities in turn.

6.2.1 Representing recursive structure
explicitly

6.2.1.1 The LOTH view

The traditional model of representing recursive structure
explicitly is that of a recursive data structure from object-
oriented programming, as proposed by the LOTH: Objects
have attributes, which can be objects again that in turn
have their own attributes, etc. At the implementational
level, this is achieved by pointers to arbitrary positions in
memory, which in turn contain pointers to other positions
in memory, etc. Problematically, neural populations cannot
represent pointers to arbitrary other neural populations in
this way, since synaptic connections among populations are
fixed on short time scales. Thus, a population that is able
to represent pointers to arbitrary other neural populations
would have to be connected to each of these populations,
which is unrealistic. Hence, the LOTH model of represent-
ing combinatorial structure gives us no insights regarding
neural realization.
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6.2.1.2 The LISA model

Hummel and Holyoak (2003) propose the LISA model forHummel, J. E. & Holyoak, K. J. (2003).
A symbolic-connectionist theory of relational
inference and generalization. Psychological
Review, 110 (2), 220–264

how recursively nested symbolic structures can be neurally
represented. Each part of a combinatorial concept is repre-
sented by a population of neurons that are organized along
four levels of a hierarchy.

The first level consists of a set of neural populations rep-
resenting subsymbols like male, female, adult, human,
etc.

The second level consists of a set of neural populations
representing symbols, which are connected to a set subsym-
bols that define their semantics. For instance, the symbol
Bill is connected to the subsymbol populations for male,
adult, human, etc. Similarly, the symbol lover is con-
nected to the subsymbol populations for has-emotion,
emotion-positive, etc.

The third level consists of a set of neural populations
representing subpropositions whose semantics are defined
by virtue of their connections to the symbols. For instance,
the role-binding Bill+lover is represented as a neural
population that is connected with the symbols Bill and
lover.

The fourth level consists of a set of neural populations
representing propositions, which are connected to a set of
subpropositions that define their semantics. For instance,
the proposition loves(Bill, Mary) is represented by
its connection with the subpropositions Bill+lover and
Mary+beloved.

A downside of the LISA model is that it is limited to
structures of a certain depth. While there may be a realistic
cognitive limit on the depth of the structures that humans
are able to represent, it is unlikely that this depth limit
occurs at the level of single relations.

A more serious problem with the LISA model is the
fact that each recursively nested structure is represented by
its own neural population. Stewart and Eliasmith (2012)Stewart, T. & Eliasmith, C. (2012). Compo-

sitionality and biologically plausible models.
In M. Werning, W. Hinzen, & E. Machery
(Eds.), The Oxford Handbook of Composition-
ality. Oxford: Oxford University Press

estimate that being able to represent every proposition of
the form relation(agent, theme) with LISA requires an
unrealistic 30 billion neural populations, while the human
brain only contains around 100 billion neurons. If higher-
order propositions like know(relation(agent, theme))
were desired as well, the number would explode even further.

Alternatively, if new propositions were to be built on
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the fly, this would require altering synaptic connections,
which is likely to take longer than the time required to read
and understand a novel linguistic expression.

6.2.1.3 The Neural Blackboard Architecture

Van der Velde and De Kamps (2006) propose the Neural Van der Velde, F. & De Kamps, M. (2006).
Neural blackboard architectures of combina-
torial structures in cognition. Behavioral and
Brain Sciences, 29 (1), 37–70

Blackboard Architecture. This architecture is somewhat
similar to the LISA model, but instead of representing each
filler-role binding by its own neural population, it instead
allows to flexibly assign roles to fillers via gating neurons.

There is a neural population for each noun, and a fixed
number of neural populations called noun assemblies. Each
noun assembly is connected to every noun, but these con-
nections are gated. Thus, each noun assembly can be
flexibly bound to an arbitrary noun by “opening the gate”
of that connection. An analogous mechanisms exists for the
other word types in the form of verb assemblies, adjective
assemblies, preposition assemblies, clause assemblies, etc.

Each noun assembly is further connected to a set of
role assemblies (e.g., agent assemblies, theme assemblies,
etc). Again, these connections are gated, allowing each
noun assembly to be bound to an arbitrary role assembly.
The role assemblies can in turn be combined to relational
assemblies. Again, analogous mechanisms exist for the
other word types.

Stewart and Eliasmith (2012) describe some problems Stewart, T. & Eliasmith, C. (2012). Compo-
sitionality and biologically plausible models.
In M. Werning, W. Hinzen, & E. Machery
(Eds.), The Oxford Handbook of Composition-
ality. Oxford: Oxford University Press

with this architecture. First, they estimate that this ar-
chitecture requires around 800 million neurons, which is
significantly less than the number of neurons required by
the LISA model, but still rather much. Second, they note
that the complete connectivity between noun assemblies
and nouns requires long-distance complete connectivity,
which is at odds with the local and sparse connectivity that
is actually observed in the cortex. Third, they note that the
architecture does not feature graceful degradation. Rather,
damage to small parts of the architecture can lead to pat-
terns of failure that are not observed in human language
behavior. Smolensky, P. (1990). Tensor product vari-

able binding and the representation of sym-
bolic structures in connectionist systems. Ar-
tificial Intelligence, 46 (1-2), 159–217

Plate, T. A. (1995). Holographic reduced rep-
resentations. IEEE Transactions on Neural
Networks, 6 (3), 623–641

6.2.1.4 Vector-Symbolic Architectures

Vector-Symbolic Architectures (VSAs) (e.g., Smolensky, 1990;
Plate, 1995) represent atomic concepts as high-dimensional
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vectors and define a range of algebraic operations that allow
to combine vectors representing atomic concepts into ten-
sors or vectors representing combinatorial concepts. These
combinatorial concepts can in turn be combined into yet
more complex combinatorial concepts. Inverse algebraic
operations allow to reconstruct the original component con-
cepts from the combinatorial concepts.Stewart, T. & Eliasmith, C. (2012). Compo-

sitionality and biologically plausible models.
In M. Werning, W. Hinzen, & E. Machery
(Eds.), The Oxford Handbook of Composition-
ality. Oxford: Oxford University Press

While early work on VSAs took these vectors or tensors
to be activation values in connectionist networks, it has by
now been recognized that this is biologically implausible.
However, Stewart and Eliasmith (2012) demonstrate how
VSAs can be neurally realized with the Neural Engineering
Framework (NEF).

The NEF may be criticized for employing optimization
methods which are so powerful that they can learn virtually
any mathematical operation if it can in theory be imple-
mented through networks of neurons. While the resulting
model is then built out of biologically realistic neurons, it
is questionable whether the model as a whole is also bio-
logically realistic. Moreover, the algebraic operations that
allow to combine atomic concept vectors into combinatorial
concept tensors or vectors are to a large part contrived and
no reason is given for why the brain should employ them.

6.2.2 Representing recursive structure
implicitly in a sequence

An alternative approach to representing the recursive struc-
ture of a combinatorial concept explicitly is to represent it
by means of an appropriately structured symbol sequence.
“Appropriately structured” means that the sequence is built
according to rules of syntax in such a way that information
about how the symbols are recursively nested is implicit in
the sequence and can in principle be extracted from it.

As an example, consider again the combinatorial concept
from Figure 2.3, i.e., “a red object right of a red object
below a green diagonal object and above a blue object”.
A sequential representation of that concept might look as
follows:

1 (red rightOf (red below (green diagonal) above
(blue)))
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The way the brackets are placed implicitly determines the
recursive structure. This becomes clear when adding inden-
tation as follows:

1 (
2 red
3 rightOf (
4 red
5 below (
6 green
7 diagonal
8 )
9 above (

10 blue
11 )
12 )
13 )

The neural systems that work with such a representation
merely need to process it in accordance with the rules
of syntax, which ensures that the recursive structure is
respected correctly.

Representing combinatorial structures as a sequence re-
quires significantly fewer neural resources than either of the
architectures considered so far. As described in Section 4.4,
if synaptic connections are fixed, then it merely requires
to repeat the set of concept nodes once for each ordinal
node in a sequence and adding a gating mechanism for each
of these copies. If synaptic connections are entrained by
fast plasticity, then it only requires a single node for each
concept.

Moreover, representing the combinatorial structure ex-
plicitly adds a lot of complexity but does not appear to
serve any purpose. The only purpose of representing the
combinatorial structure explicitly is to be able to access the
parts of the combinatorial structure independently and in
parallel. If we assume that conceptual processing proceeds
sequentially, then there is no need for this, and thus it
would be a waste of neural resources. In particular, upon
processing a sentence, that sequential sentence would have
to be transformed into a combinatorial concept whose com-
binatorial structure is explicitly represented, only to be
transformed back into a sequence again upon grounding it.

In summary, our architecture can as of now remain
agnostic as to how conceptual structure is represented prior
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to being transformed into a grounding strategy, albeit a
sequential representation interfaces most naturally with the
sequential grounding strategy representation.

6.3 Addressing productivity,
systematicity and
compositionality

Recall from Section 2.3 that an important argument in
favor of the CCTM has been its ability to account for the
productivity, compositionality and systematicity of thought
and language. The commonality in these arguments is
that they show that the mind must operate on structured
representations, that its operations must be sensitive to the
combinatorial structure of those representations, and that
there must be a homogeneous mechanism that processes
combinatorial structures, regardless of what the parts of
those structures are and how they are combined. These
are properties exhibited by Turing machines, which Fodor
and Pylyshyn take to show that the mind must be a Turing
machine.

Our architecture can meet all of these challenges. It
exhibits productivity, since it is able to ground an indefinite
range of concepts by finite means. This is achieved by
operating on grounding strategies which are structured
representations, i.e., they are generated recursively out of
parts.

The architecture also exhibits compositionality, since
the meaning (i.e., denotation) of each concept is determined
by the meanings (i.e., denotations) of its parts (i.e., frames,
attributes and relations) and the way they are put together
(i.e., the way the sequence of grounding processes is struc-
tured). This is achieved because the GSEx is sensitive to
the combinatorial structure of the grounding strategy. The
components of a combinatorial concept are sequentially
grounded, while the state of the grounding system is passed
on from one grounding step to the next grounding step
through self-sustained fields. In particular, the mental map,
which stores the objects that have been grounded thus far,
allows future grounding processes to refer back to those
objects. Through a chain of back-references of this kind,
a hierarchical dependency structure between grounding
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processes emerges, which ensures that the combinatorial
structure of the concept is respected correctly. This se-
quential grounding and passing along of the state is to
be distinguished from CCTM architectures that achieve
productivity and compositionality by a recursive pattern of
function calls.

Finally, the architecture exhibits systematicity, since the
ability to ground some concepts is systematically related
to the ability to ground other concepts. For example, the
ability to ground “a green object below a red object” is
systematically related to the ability to ground “a red object
right of a red object below a green diagonal object and above
a blue object”. The grounding of these concepts employs
the same cognitive mechanism. The only difference is the
way the grounding strategy guides the grounding strategy
executor, i.e., the way the grounding strategy is structured
and the way that slots are filled with values.

To summarize, our architecture operates on structured
representations, its operations are sensitive to the combi-
natorial structure of those representations, and there is a
homogeneous mechanism that processes these combinatorial
structures, regardless of what the parts of those structures
are and how they are combined. This accounts for Fodor
and Pylyshyn’s arguments and shows that they can be met
by a neurally plausible architecture that is significantly
more restrained than a Turing machine.

6.4 Contrast to other approaches
for the grounding of
combinatorial concepts

Winograd, T. (1971). Procedures as a rep-
resentation for data in a computer program
for understanding natural language. Mas-
sachusetts Institute of Technology, Project
MAC

Brown, M. K., Buntschuh, B. M., & Wilpon,
J. G. (1992). Sam: A perceptive spoken
language-understanding robot. IEEE Trans-
actions on Systems, Man, and Cybernetics,
22 (6), 1390–1402

Nagao, K. & Rekimoto, J. (1995). Ubiq-
uitous talker: Spoken language interaction
with real world objects. arXiv preprint cmp-
lg/9505038

SHRDLU (Winograd, 1971), the first computational model
that was able to find referents for combinatorial concepts in
the world, had access to an amodal symbolic representation
of the world and matched a given combinatorial concept
to that representation by a logical constraint satisfaction
procedure. The system lacked a mechanism to build a scene
representation out of perceptual input. Instead, it had prior
access to a symbolic representation of the scene.

SAM (Brown et al., 1992) and Ubiquitous Talker (Na-
gao & Rekimoto, 1995) are more comprehensive models.
Their amodal representation of the scene (the “knowledge
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base”), which they use to find referents for combinatorial
concepts, is built from perceptual input. Moreover, they
employ a natural language parsing framework, which yields
a combinatorial syntactical representation of a linguistic
expression, and then evaluate the syntactical representation
through recursive function calls in order to find a referent
in their knowledge base.

While being landmark works in AI which showed the
field’s potential and were impressive for their time, these
types of architectures are unlikely to lead to insights regard-
ing language and concept grounding in biological cognitive
systems. Apart from not being neural models, they all find
objects that match a given combinatorial concept by a form
of amodal symbolic constraint satisfaction procedure. For
instance, when finding “a red object above a green object”,
they do so by finding an amodal proposition in their knowl-
edge base which states that two objects in the scene bear
that spatial relation to each other. This is at odds with theLogan, G. D. (1994). Spatial attention and

the apprehension of spatial relations. Journal
of Experimental Psychology: Human Percep-
tion and Performance, 20 (5), 1015

finding that apprehending spatial relations is a perceptual
mechanism that requires spatial attention (Logan, 1994).
Moreover, matching combinatorial concepts to a symbolic
representation of the scene rather than the scene itself loses
a lot of the subtle visual information that could be put to
use when finding a referent for a concept.

Gorniak and Roy (2004) provide a more realistic con-Gorniak, P. & Roy, D. (2004). Grounded se-
mantic composition for visual scenes. Jour-
nal of Artificial Intelligence Research, 21,
429–470

tribution that is closer to our aims – an algorithmic model
that grounds combinatorial concepts in perception. Like
SAM and Ubiquitous Talker, their model parses a linguis-
tic phrase into a combinatorial syntactical representation.
However, it then evaluates this representation against a
visual/geometric representation of the scene as opposed to
an amodal knowledge base, finding a matching object. This
model is able to cover an impressive range of tasks, accounts
for empirical psychological data, and is committed to the
GC stance. However, it incorporates representations like
recursively nested data structures, which, as argued before,
are difficult to realize neurally. Moreover, it operates on
these nested data structures through recursive function calls
that necessitate a call stack, which is also neurally implau-
sible. This is in stark contrast to the more parsimonious
approach of processing the parts of a combinatorial concept
sequentially and passing on a minimal representation of
the output of each grounding step to subsequent grounding
steps.
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Richter (2018, p. 12) reviews a range of other models Richter, M. (2018). A neural dynamic model
for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

for the grounding of concepts, all of which are lacking in
one or more of the following respects:

1. They are algorithmic rather than neural, or at least
include algorithmic building blocks.

2. They cannot deal with arbitrarily nested combinato-
rial concepts, but only with either atomic concepts or
single relations.

3. They find matching objects against an amodal sym-
bolic knowledge base, rather than grounding them in
perception.

Thus, to the best of my knowledge, our architecture is the
first neural process model for the perceptual grounding of
arbitrarily nested combinatorial concepts.

6.5 Limitations and future
research directions

Research on concept representation and composition still
has a long way to go, making a comprehensive neural theory
of these feats a distant goal (Barsalou, 2017). Nevertheless,
progress in that direction can be made based on what is
already known.

As of now, our architecture is limited to the perceptual
spaces color, orientation, shape, and to spatial relations. To
bring it closer toward a neural theory of concepts in general,
an important step is therefore to extend it by additional
attributes and relations. Additional attributes could be
other perceptual attributes like texture or size, or more
abstract conceptual attributes like age, speed, ripeness,
material, force, hardness, arousal, etc. For the latter, an
interesting research direction is to investigate how these ab-
stract attributes may ultimately be grounded in perceptual
attributes.

Another step that would bring the architecture closer
toward a comprehensive neural theory of concept grounding
is the ability to define high-level concept nodes in terms
of low-level frame graphs – e.g., a tree is a green object
above a vertical brown rectangle. Thus, activating high-
level concept nodes causes these high-level concepts to be
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grounded by virtue of initiating an appropriate lower-level
grounding sequence. This mechanism should be hierarchical
in nature, such that high-level concepts can be defined in
terms of other high-level concepts – e.g., a forest is a tree
to the left of a tree to the left of a tree. Moreover, it should
allow for concept inheritance – e.g., a fir tree is a tree whose
treetop has triangular shape.

Furthermore, it is clear that most human concepts, both
atomic and combinatorial, do not have sharp boundaries,
but are vague (e.g., Keefe and Smith, 1996). Rather than
judging whether or not a given concept is applicable, hu-
mans instead seem to determine a degree of membership
and adapt their behavior based on how certain they are
that a given concept is applicable. In contrast, our model
only tries to ground a given combinatorial concept without
determining a degree of membership. Evaluating goodness
of fit of combinatorial concepts is therefore a possible future
extension to the architecture.

In addition, different feature dimensions seem to have
different importance in establishing the degree of concept
membership, which is usually modeled by assigning a weight
to each feature dimension (e.g., Rosch and Mervis, 1975).
Our architecture, in contrast, treats all feature dimensions
to be of equal importance. In addition, the involvement of
the various feature dimensions is different when activating
a concept bottom-up as opposed to top-down. For example,
encountering a penguin is unlikely to activate the concept
of bird, since it does not exhibit typical bird features, but a
top-down grounding process might still establish a penguin
as a perfectly good member of the bird concept (Hampton,
2007). Adding the possibility to add different degrees of
importance to feature dimensions is therefore a conceivable
extension.
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Figure 6.1: A frame graph for the
combinatorial concept of a car composed of
a hierarchy of parts.

Another as of yet disregarded fact is that combinatorial
concepts are not always grounded completely upon each
encounter with an object falling under the concept. In-
stead, parts of the combinatorial concept may get grounded
according to task demands. Especially for hierarchically
nested combinatorial concepts, e.g., ones that represent an
object as composed of a hierarchy of parts (Figure 6.1), the
deep structure is not always considered completely. Instead,
superficial information is activated more reliably across
situations, whereas deeper information may be activated
later when task demands require it (Forbus, Gentner, &
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Law, 1995; Blanchette & Dunbar, 2000). For instance, Forbus, K. D., Gentner, D., & Law, K. (1995).
Mac/fac: A model of similarity-based re-
trieval. Cognitive Science, 19 (2), 141–205

Blanchette, I. & Dunbar, K. (2000). How
analogies are generated: The roles of struc-
tural and superficial similarity. Memory &
Cognition, 28 (1), 108–124

upon encountering a car, it may first be identified by one
or more characteristic features. When trying to enter the
car, deeper levels of the car concept may get activated, e.g.,
representations of the doors and interior as parts of the car.
After entering a car, still deeper levels of the hierarchy may
get activated, e.g., representations of the driver seat and
steering wheel. In contrast, our architecture always tries
to ground a combinatorial concept completely, taking each
of its parts into account. A possible future extension is to
allow parts of the combinatorial concepts to get activated
based on task demands.

It has furthermore been argued that the meanings of
concepts change depending on how they are put together
into combinatorial concepts. In contrast, our model can
only handle intersections or unions of concepts, without al-
tering the meaning of a concept based on the combinatorial
concept in which it occurs. Gärdenfors (2014) gives the
examples of adjective-noun combinations like “white skin”,
which is actually pinkish, “black skin”, which is actually
brown, and “large squirrel”, which is not a large animal.
These examples can be accommodated by regarding the ad-
jectives to attain their meaning only in relation to the noun
with which they are combined. The question of how the
meanings of atomic concepts change depending on linguistic
context has been investigated by semanticists at a func-
tional level. A possible research direction is to find neural
models for these context-dependent meaning changes. Werning, M. & Cosentino, E. (2017). The in-

teraction of bayesian pragmatics and lexical
semantics in linguistic interpretation: Using
event-related potentials to investigate hear-
ers’ probabilistic predictions. In G. Gunzel-
man et al. (Eds.), Proceedings of the 39th an-
nual conference of the cognitive science soci-
ety. Austin, TX: Cognitive Science Society

Gorniak, P. & Roy, D. (2004). Grounded se-
mantic composition for visual scenes. Jour-
nal of Artificial Intelligence Research, 21,
429–470

Not only immediate linguistic context, but also discourse
context (Werning & Cosentino, 2017) and visual context
(Gorniak & Roy, 2004) can change the meanings of atomic
and combinatorial concepts. For instance, Gorniak and Roy
(2004) find that the word “middle” can have four different
meanings depending on different visual contexts to be un-
derstood. Similarly, expressions like “the leftmost green
object” may either denote an object which is the leftmost
object and green, or an object which is the leftmost among
the green objects. This is a challenging aspect of language
and likely to require a great deal of research effort.

The presented architecture so far only accounts for one
direction of the grounding process – namely, grounding a
previously activated combinatorial concept in perception.
Future extensions could implement the converse process
of describing a scene. This may involve devising a way to
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activate existing high-level concepts from a large collection
of concepts heuristically (e.g., as proposed by many, through
typical features that are neither necessary nor sufficient for
concept membership), and then making a final decision by
trying to ground the activated concept. It may also involve
enabling the system to combine concepts by itself.

Finally, our architecture lacks syntactical parsing of nat-
ural language, its transformation into a conceptual struc-
ture, and the subsequent transformation into a grounding
strategy. While our architecture can remain agnostic as to
how these processes are neurally realized and still comprise
a relevant contribution to the perceptual grounding of com-
binatorial concepts, these aspects have to be addressed at
some point if the goal is to create a comprehensive model
of natural language grounding.
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This master thesis introduced a neural process model based
on Dynamic Field Theory that is able to ground combina-
torial concepts describable by frame graphs in perception.
Combinatorial concepts are transformed into a sequential
grounding strategy by the GSEnc. The grounding strategy
is then fed into the GSEx, which performs that grounding
strategy, effectively raising attention to an object in the
perceptual array that matches the combinatorial concept. Lipinski, J., Schneegans, S., Sandamirskaya,

Y., Spencer, J. P., & Schöner, G. (2012). A
neuro-behavioral model of flexible spatial lan-
guage behaviors. Journal of Experimental
Psychology: Learning, Memory and Cogni-
tion, 38 (6), 1490–1511

Richter, M., Lins, J., Schneegans, S., San-
damirskaya, Y., & Schöner, G. (2014). Au-
tonomous neural dynamics to test hypotheses
in a model of spatial language. In P. Bello,
M. Guarini, M. McShane, & B. Scassellati
(Eds.), Proceedings of the 36th annual meet-
ing of the cognitive science society (pp. 2847–
2852). Austin, TX: Cognitive Science Society

Richter, M., Lins, J., & Schöner, G. (2017).
A neural dynamic model generates descrip-
tions of object-oriented actions. Topics in
Cognitive Science, 9, 35–47

Richter, M. (2018). A neural dynamic model
for the perceptual grounding of spatial and
movement relations. (Doctoral dissertation,
Bochum, Ruhr-Universität Bochum)

In doing so, it passes parts of its activation state repre-
senting the outcome of one grounding step to subsequent
grounding steps by virtue of the self-sustained mental map.
This mental map allows grounding steps to refer back to
the outcomes of previous grounding steps. Through a chain
of back-references of this kind, a hierarchical dependency
structure between grounding processes emerges, which mir-
rors the dependency structure between the parts of the
combinatorial concepts.

The main contribution of this thesis is an extension of
previous neural architectures for the grounding of attributes
and relations (Lipinski et al., 2012; Richter et al., 2014;
Richter et al., 2017; Richter, 2018) by the ability to ground
arbitrarily nested combinatorial concepts.

The capabilities of the model were demonstrated in a set
of 6 simulations with qualitatively different combinatorial
concepts and scenes. The model succeeded in grounding
the given combinatorial concepts in all simulations, demon-
strating that all of these qualitatively different kinds of
combinatorial concepts can be grounded by a single ar-
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chitecture with a single set of parameters. Since other
combinatorial concepts describable by frame graphs are
not qualitatively different to the probed scenarios, there
is reason to believe that the model is able to successfully
ground arbitrary frame graphs.

A second contribution of this thesis is an embedding
of the neural theory of atomic and combinatorial concepts
underlying our grounding system in the literature of psycho-
logical theories of concepts. It was argued that the atomic
concepts introduced by previous architectures are commit-
ted to a prototype theory of concepts, which represents
concepts as a probability distribution in a conceptual or
perceptual space. Moreover, it was demonstrated that the
class of combinatorial concepts that our architecture is able
to ground are all those concepts that can be described as
frame graphs.

A third contribution of this thesis is a clear interface
between the grounding system and language processing
systems. It was argued that the grounding system can
be conceived of as an extension to the Parallel Architec-
ture (Jackendoff, 2002) that takes the output of the se-Jackendoff, R. (2002). Foundations of lan-

guage: Brain, meaning, grammar, evolution.
Oxford University Press mantical/conceptual analysis system as input. As such, it

can be regarded as an account for the grounding of com-
plex linguistic expressions, while being agnostic to how the
phonological, syntactical and semantical analysis systems
are neurally realized.

All in all, this thesis contributes another building block
that brings DFT closer towards comprehensive models of
the higher cognitive feats. It offers interfaces to integrate it
with other work by the DFT research community on object
recognition, scene representation, grounding movement re-
lations, mental models, motor control, and more. Together,
these architectures already comprise a striking model of
important parts of the human brain. When extended in the
ways suggested in the previous chapter, these architectures
may be lifted towards realistic models of reasoning and
language and, ultimately, all of cognition.
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